Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the first of at least two articles that describe the moduli spaces of pseudoholomorphic, multiply punctured spheres in as defined by a certain natural pair of almost complex structure and symplectic form. This article proves that all moduli space components are smooth manifolds. Necessary and sufficient conditions are also given for a collection of closed curves in to appear as the set of limits of the constant slices of a pseudoholomorphic, multiply punctured sphere.
Taubes, Clifford Henry 1
@article{GT_2006_10_2_a6, author = {Taubes, Clifford Henry}, title = {Pseudoholomorphic punctured spheres in {R{\texttimes}(S{\textonesuperior}{\texttimes}S{\texttwosuperior}):} {Properties} and existence}, journal = {Geometry & topology}, pages = {785--928}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2006}, doi = {10.2140/gt.2006.10.785}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.785/} }
TY - JOUR AU - Taubes, Clifford Henry TI - Pseudoholomorphic punctured spheres in R×(S¹×S²): Properties and existence JO - Geometry & topology PY - 2006 SP - 785 EP - 928 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.785/ DO - 10.2140/gt.2006.10.785 ID - GT_2006_10_2_a6 ER -
Taubes, Clifford Henry. Pseudoholomorphic punctured spheres in R×(S¹×S²): Properties and existence. Geometry & topology, Tome 10 (2006) no. 2, pp. 785-928. doi : 10.2140/gt.2006.10.785. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.785/
[1] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799
, , , , ,[2] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[3] Constructing symplectic forms on 4–manifolds which vanish on circles, Geom. Topol. 8 (2004) 743
, ,[4] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[5] Dynamics, topology, and holomorphic curves, Doc. Math. (1998) 255
,[6] Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35
,[7] Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270
, , ,[8] Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337
, , ,[9] Correction to: “Properties of pseudoholomorphic curves in symplectisations I: Asymptotics”, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 535
, , ,[10] Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381
, , ,[11] An openness theorem for harmonic 2–forms on 4–manifolds, Illinois J. Math. 44 (2000) 479
,[12] The periodic Floer homology of a Dehn twist, Algebr. Geom. Topol. 5 (2005) 301
, ,[13] The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143
,[14] $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)
, ,[15] The geometry of the Seiberg–Witten invariants, Doc. Math. (1998) 493
,[16] The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1\times B^3$, Geom. Topol. 2 (1998) 221
,[17] Seiberg–Witten invariants, self-dual harmonic 2–forms and the Hofer–Wysocki–Zehnder formalism, from: "Surveys in differential geometry", Surv. Differ. Geom., VII, Int. Press, Somerville, MA (2000) 625
,[18] A compendium of pseudoholomorphic beasts in $\mathbb R\times (S^1\times S^2)$, Geom. Topol. 6 (2002) 657
,[19] Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671
,Cité par Sources :