Pseudoholomorphic punctured spheres in R×(S¹×S²): Properties and existence
Geometry & topology, Tome 10 (2006) no. 2, pp. 785-928.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the first of at least two articles that describe the moduli spaces of pseudoholomorphic, multiply punctured spheres in × (S1 × S2) as defined by a certain natural pair of almost complex structure and symplectic form. This article proves that all moduli space components are smooth manifolds. Necessary and sufficient conditions are also given for a collection of closed curves in S1 × S2 to appear as the set of |s| limits of the constant s slices of a pseudoholomorphic, multiply punctured sphere.

DOI : 10.2140/gt.2006.10.785
Keywords: pseudoholomorphic, punctured sphere, almost complex structure, symplectic form, moduli space

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge MA 02138, USA
@article{GT_2006_10_2_a6,
     author = {Taubes, Clifford Henry},
     title = {Pseudoholomorphic punctured spheres in {R{\texttimes}(S{\textonesuperior}{\texttimes}S{\texttwosuperior}):} {Properties} and existence},
     journal = {Geometry & topology},
     pages = {785--928},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.785},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.785/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - Pseudoholomorphic punctured spheres in R×(S¹×S²): Properties and existence
JO  - Geometry & topology
PY  - 2006
SP  - 785
EP  - 928
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.785/
DO  - 10.2140/gt.2006.10.785
ID  - GT_2006_10_2_a6
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T Pseudoholomorphic punctured spheres in R×(S¹×S²): Properties and existence
%J Geometry & topology
%D 2006
%P 785-928
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.785/
%R 10.2140/gt.2006.10.785
%F GT_2006_10_2_a6
Taubes, Clifford Henry. Pseudoholomorphic punctured spheres in R×(S¹×S²): Properties and existence. Geometry & topology, Tome 10 (2006) no. 2, pp. 785-928. doi : 10.2140/gt.2006.10.785. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.785/

[1] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[2] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[3] D T Gay, R Kirby, Constructing symplectic forms on 4–manifolds which vanish on circles, Geom. Topol. 8 (2004) 743

[4] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[5] H H W Hofer, Dynamics, topology, and holomorphic curves, Doc. Math. (1998) 255

[6] H Hofer, Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35

[7] H Hofer, K Wysocki, E Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270

[8] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337

[9] H Hofer, K Wysocki, E Zehnder, Correction to: “Properties of pseudoholomorphic curves in symplectisations I: Asymptotics”, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 535

[10] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381

[11] K Honda, An openness theorem for harmonic 2–forms on 4–manifolds, Illinois J. Math. 44 (2000) 479

[12] M Hutchings, M Sullivan, The periodic Floer homology of a Dehn twist, Algebr. Geom. Topol. 5 (2005) 301

[13] D Mcduff, The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143

[14] D Mcduff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)

[15] C H Taubes, The geometry of the Seiberg–Witten invariants, Doc. Math. (1998) 493

[16] C H Taubes, The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1\times B^3$, Geom. Topol. 2 (1998) 221

[17] C H Taubes, Seiberg–Witten invariants, self-dual harmonic 2–forms and the Hofer–Wysocki–Zehnder formalism, from: "Surveys in differential geometry", Surv. Differ. Geom., VII, Int. Press, Somerville, MA (2000) 625

[18] C H Taubes, A compendium of pseudoholomorphic beasts in $\mathbb R\times (S^1\times S^2)$, Geom. Topol. 6 (2002) 657

[19] R Ye, Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671

Cité par Sources :