The integral cohomology of the group of loops
Geometry & topology, Tome 10 (2006) no. 2, pp. 759-784.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let  PΣn denote the group that can be thought of either as the group of motions of the trivial n–component link or the group of symmetric automorphisms of a free group of rank n. The integral cohomology ring of  PΣn is determined, establishing a conjecture of Brownstein and Lee.

DOI : 10.2140/gt.2006.10.759
Keywords: nonpositive curvature, CAT(0), decidability

Jensen, Craig A 1 ; McCammond, Jon 2 ; Meier, John 3

1 Department of Mathematics, University of New Orleans, New Orleans, LA 70148, USA
2 Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
3 Deptartment of Mathematics, Lafayette College, Easton, PA 18042, USA
@article{GT_2006_10_2_a5,
     author = {Jensen, Craig A and McCammond, Jon and Meier, John},
     title = {The integral cohomology of the group of loops},
     journal = {Geometry & topology},
     pages = {759--784},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.759},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.759/}
}
TY  - JOUR
AU  - Jensen, Craig A
AU  - McCammond, Jon
AU  - Meier, John
TI  - The integral cohomology of the group of loops
JO  - Geometry & topology
PY  - 2006
SP  - 759
EP  - 784
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.759/
DO  - 10.2140/gt.2006.10.759
ID  - GT_2006_10_2_a5
ER  - 
%0 Journal Article
%A Jensen, Craig A
%A McCammond, Jon
%A Meier, John
%T The integral cohomology of the group of loops
%J Geometry & topology
%D 2006
%P 759-784
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.759/
%R 10.2140/gt.2006.10.759
%F GT_2006_10_2_a5
Jensen, Craig A; McCammond, Jon; Meier, John. The integral cohomology of the group of loops. Geometry & topology, Tome 10 (2006) no. 2, pp. 759-784. doi : 10.2140/gt.2006.10.759. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.759/

[1] A Adem, D Cohen, F R Cohen, On representations and $K$–theory of the braid groups, Math. Ann. 326 (2003) 515

[2] D J Benson, Representations and cohomology: I, Cambridge Studies in Advanced Mathematics 30, Cambridge University Press (1998)

[3] M Bestvina, K U Bux, D Margalit, Dimension of the Torelli group for $\mathrm{Out}(\mathbb{F}_n)$, preprint

[4] N Brady, J Mccammond, J Meier, A Miller, The pure symmetric automorphisms of a free group form a duality group, J. Algebra 246 (2001) 881

[5] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1994)

[6] A Brownstein, R Lee, Cohomology of the group of motions of $n$ strings in 3–space, from: "Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991)", Contemp. Math. 150, Amer. Math. Soc. (1993) 51

[7] F Cohen, J Pakianathan, On subgroups of the automorphism group of a free group and associated graded Lie algebras, in preparation

[8] D J Collins, Cohomological dimension and symmetric automorphisms of a free group, Comment. Math. Helv. 64 (1989) 44

[9] D L Goldsmith, The theory of motion groups, Michigan Math. J. 28 (1981) 3

[10] A Hatcher, Algebraic topology, Cambridge University Press (2002)

[11] C Jensen, J Mccammond, J Meier, The Euler characteristic of the Whitehead automorphism group of a free product, Trans. Amer. Math. Soc, to appear

[12] S Krstić, J Mccool, The non-finite presentability of $\mathrm{IA}(F_3)$ and $\mathrm{GL}_2(\mathbf{Z}[t,t^{-1}])$, Invent. Math. 129 (1997) 595

[13] J Mccammond, J Meier, The hypertree poset and the $l^2$–Betti numbers of the motion group of the trivial link, Math. Ann. 328 (2004) 633

[14] J Mccool, On basis-conjugating automorphisms of free groups, Canad. J. Math. 38 (1986) 1525

[15] D Mccullough, A Miller, Symmetric automorphisms of free products, Mem. Amer. Math. Soc. 122 (1996)

[16] A Pettet, Finiteness properties for the kernel of pure motions of n unlinked loops

[17] A Pettet, The Johnson homomorphism and the second cohomology of $\mathrm{ IA}_n$, Algebr. Geom. Topol. 5 (2005) 725

[18] C Schaper, Suspensions of affine arrangements, Math. Ann. 309 (1997) 463

[19] R P Stanley, Enumerative combinatorics Vol. 2, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press (1999)

Cité par Sources :