Infinitely many hyperbolic Coxeter groups through dimension 19
Geometry & topology, Tome 10 (2006) no. 2, pp. 737-758.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the following: there are infinitely many finite-covolume (resp. cocompact) Coxeter groups acting on hyperbolic space Hn for every n 19 (resp. n 6). When n = 7 or 8, they may be taken to be nonarithmetic. Furthermore, for 2 n 19, with the possible exceptions n = 16 and 17, the number of essentially distinct Coxeter groups in Hn with noncompact fundamental domain of volume V grows at least exponentially with respect to V . The same result holds for cocompact groups for n 6. The technique is a doubling trick and variations on it; getting the most out of the method requires some work with the Leech lattice.

DOI : 10.2140/gt.2006.10.737
Keywords: Coxeter group, Coxeter polyhedron, Leech lattice, redoublable polyhedon

Allcock, Daniel 1

1 Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA
@article{GT_2006_10_2_a4,
     author = {Allcock, Daniel},
     title = {Infinitely many hyperbolic {Coxeter} groups through dimension 19},
     journal = {Geometry & topology},
     pages = {737--758},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.737},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.737/}
}
TY  - JOUR
AU  - Allcock, Daniel
TI  - Infinitely many hyperbolic Coxeter groups through dimension 19
JO  - Geometry & topology
PY  - 2006
SP  - 737
EP  - 758
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.737/
DO  - 10.2140/gt.2006.10.737
ID  - GT_2006_10_2_a4
ER  - 
%0 Journal Article
%A Allcock, Daniel
%T Infinitely many hyperbolic Coxeter groups through dimension 19
%J Geometry & topology
%D 2006
%P 737-758
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.737/
%R 10.2140/gt.2006.10.737
%F GT_2006_10_2_a4
Allcock, Daniel. Infinitely many hyperbolic Coxeter groups through dimension 19. Geometry & topology, Tome 10 (2006) no. 2, pp. 737-758. doi : 10.2140/gt.2006.10.737. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.737/

[1] R Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987) 133

[2] R E Borcherds, Coxeter groups, Lorentzian lattices, and $K3$ surfaces, Internat. Math. Res. Notices (1998) 1011

[3] V O Bugaenko, Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring $\mathbf{Z}[(\sqrt{5}+1)/2]$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1984) 6

[4] V O Bugaenko, On reflective unimodular hyperbolic quadratic forms, Selecta Math. Soviet. 9 (1990) 263

[5] V O Bugaenko, Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices, from: "Lie groups, their discrete subgroups, and invariant theory", Adv. Soviet Math. 8, Amer. Math. Soc. (1992) 33

[6] J H Conway, N A Sloane, Leech roots and Vinberg groups, Proc. Roy. Soc. London Ser. A 384 (1982) 233

[7] J H Conway, N A Sloane, Sphere packings, lattices and groups, Grundlehren series 290, Springer (1993)

[8] F Esselmann, The classification of compact hyperbolic Coxeter $d$–polytopes with $d+2$ facets, Comment. Math. Helv. 71 (1996) 229

[9] I M Kaplinskaja, The discrete groups that are generated by reflections in the faces of simplicial prisms in Lobačevskiĭspaces, Mat. Zametki 15 (1974) 159

[10] V S Makarov, The Fedorov groups of four-dimensional and five-dimensional Lobačevskiĭspace, from: "Studies in General Algebra, No. 1 (Russian)", Kišinev. Gos. Univ., Kishinev (1968) 120

[11] Pari/Gp, version 2.1.5

[12] L Potyagailo, E Vinberg, On right-angled reflection groups in hyperbolic spaces, Comment. Math. Helv. 80 (2005) 63

[13] M N Prokhorov, Absence of discrete groups of reflections with a noncompact fundamental polyhedron of finite volume in a Lobachevskiĭspace of high dimension, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 413

[14] O P Ruzmanov, Examples of nonarithmetic crystallographic Coxeter groups in $n$–dimensional Lobachevskiĭspace when $6\leq n\leq 10$, from: "Problems in group theory and in homological algebra (Russian)", Yaroslav. Gos. Univ. (1989) 138

[15] P V Tumarkin, Compact hyperbolic Coxeter $n$–polytopes with $n+3$ facets

[16] P V Tumarkin, Hyperbolic Coxeter polytopes in $\mathbb H^m$ with $n+2$ hyperfacets, Mat. Zametki 75 (2004) 909

[17] P V Tumarkin, Hyperbolic $n$–dimensional Coxeter polytopes with $n+3$ facets, Tr. Mosk. Mat. Obs. 65 (2004) 253

[18] È B Vinberg, The groups of units of certain quadratic forms, Mat. Sb. $($N.S.$)$ 87(129) (1972) 18

[19] È B Vinberg, The nonexistence of crystallographic reflection groups in Lobachevskiĭspaces of large dimension, Funktsional. Anal. i Prilozhen. 15 (1981) 67

[20] È B Vinberg, The two most algebraic $K3$ surfaces, Math. Ann. 265 (1983) 1

[21] È B Vinberg, I M Kaplinskaja, The groups $O_{18,1}(Z)$ and $O_{19,1}(Z)$, Dokl. Akad. Nauk SSSR 238 (1978) 1273

Cité par Sources :