Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove the following: there are infinitely many finite-covolume (resp. cocompact) Coxeter groups acting on hyperbolic space for every (resp. ). When or , they may be taken to be nonarithmetic. Furthermore, for , with the possible exceptions and , the number of essentially distinct Coxeter groups in with noncompact fundamental domain of volume grows at least exponentially with respect to . The same result holds for cocompact groups for . The technique is a doubling trick and variations on it; getting the most out of the method requires some work with the Leech lattice.
Allcock, Daniel 1
@article{GT_2006_10_2_a4, author = {Allcock, Daniel}, title = {Infinitely many hyperbolic {Coxeter} groups through dimension 19}, journal = {Geometry & topology}, pages = {737--758}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2006}, doi = {10.2140/gt.2006.10.737}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.737/} }
Allcock, Daniel. Infinitely many hyperbolic Coxeter groups through dimension 19. Geometry & topology, Tome 10 (2006) no. 2, pp. 737-758. doi : 10.2140/gt.2006.10.737. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.737/
[1] Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987) 133
,[2] Coxeter groups, Lorentzian lattices, and $K3$ surfaces, Internat. Math. Res. Notices (1998) 1011
,[3] Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring $\mathbf{Z}[(\sqrt{5}+1)/2]$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1984) 6
,[4] On reflective unimodular hyperbolic quadratic forms, Selecta Math. Soviet. 9 (1990) 263
,[5] Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices, from: "Lie groups, their discrete subgroups, and invariant theory", Adv. Soviet Math. 8, Amer. Math. Soc. (1992) 33
,[6] Leech roots and Vinberg groups, Proc. Roy. Soc. London Ser. A 384 (1982) 233
, ,[7] Sphere packings, lattices and groups, Grundlehren series 290, Springer (1993)
, ,[8] The classification of compact hyperbolic Coxeter $d$–polytopes with $d+2$ facets, Comment. Math. Helv. 71 (1996) 229
,[9] The discrete groups that are generated by reflections in the faces of simplicial prisms in Lobačevskiĭspaces, Mat. Zametki 15 (1974) 159
,[10] The Fedorov groups of four-dimensional and five-dimensional Lobačevskiĭspace, from: "Studies in General Algebra, No. 1 (Russian)", Kišinev. Gos. Univ., Kishinev (1968) 120
,[11] version 2.1.5
,[12] On right-angled reflection groups in hyperbolic spaces, Comment. Math. Helv. 80 (2005) 63
, ,[13] Absence of discrete groups of reflections with a noncompact fundamental polyhedron of finite volume in a Lobachevskiĭspace of high dimension, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 413
,[14] Examples of nonarithmetic crystallographic Coxeter groups in $n$–dimensional Lobachevskiĭspace when $6\leq n\leq 10$, from: "Problems in group theory and in homological algebra (Russian)", Yaroslav. Gos. Univ. (1989) 138
,[15] Compact hyperbolic Coxeter $n$–polytopes with $n+3$ facets
,[16] Hyperbolic Coxeter polytopes in $\mathbb H^m$ with $n+2$ hyperfacets, Mat. Zametki 75 (2004) 909
,[17] Hyperbolic $n$–dimensional Coxeter polytopes with $n+3$ facets, Tr. Mosk. Mat. Obs. 65 (2004) 253
,[18] The groups of units of certain quadratic forms, Mat. Sb. $($N.S.$)$ 87(129) (1972) 18
,[19] The nonexistence of crystallographic reflection groups in Lobachevskiĭspaces of large dimension, Funktsional. Anal. i Prilozhen. 15 (1981) 67
,[20] The two most algebraic $K3$ surfaces, Math. Ann. 265 (1983) 1
,[21] The groups $O_{18,1}(Z)$ and $O_{19,1}(Z)$, Dokl. Akad. Nauk SSSR 238 (1978) 1273
, ,Cité par Sources :