Dynamics of the mapping class group action on the variety of PSL2ℂ characters
Geometry & topology, Tome 10 (2006) no. 2, pp. 715-736.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the action of the mapping class group Mod(S) on the boundary Q of quasifuchsian space Q. Among other results, Mod(S) is shown to be topologically transitive on the subset C Q of manifolds without a conformally compact end. We also prove that any open subset of the character variety X(π1(S),SL2) intersecting Q does not admit a nonconstant Mod(S)–invariant meromorphic function. This is related to a question of Goldman.

DOI : 10.2140/gt.2006.10.715
Keywords: hyperbolic geometry, mapping class group

Souto, Juan 1 ; Storm, Peter 2

1 Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago IL 60637-1514, USA
2 Department of Mathematics, Stanford University, 450 Serra Mall, Stanford CA 94305-2125, USA
@article{GT_2006_10_2_a3,
     author = {Souto, Juan and Storm, Peter},
     title = {Dynamics of the mapping class group action on the variety of {PSL2\ensuremath{\mathbb{C}}} characters},
     journal = {Geometry & topology},
     pages = {715--736},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.715},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.715/}
}
TY  - JOUR
AU  - Souto, Juan
AU  - Storm, Peter
TI  - Dynamics of the mapping class group action on the variety of PSL2ℂ characters
JO  - Geometry & topology
PY  - 2006
SP  - 715
EP  - 736
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.715/
DO  - 10.2140/gt.2006.10.715
ID  - GT_2006_10_2_a3
ER  - 
%0 Journal Article
%A Souto, Juan
%A Storm, Peter
%T Dynamics of the mapping class group action on the variety of PSL2ℂ characters
%J Geometry & topology
%D 2006
%P 715-736
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.715/
%R 10.2140/gt.2006.10.715
%F GT_2006_10_2_a3
Souto, Juan; Storm, Peter. Dynamics of the mapping class group action on the variety of PSL2ℂ characters. Geometry & topology, Tome 10 (2006) no. 2, pp. 715-736. doi : 10.2140/gt.2006.10.715. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.715/

[1] J W Anderson, A brief survey of the deformation theory of Kleinian groups, from: "The Epstein birthday schrift (Warwick 1997)" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1 (1998) 23

[2] J W Anderson, R D Canary, Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126 (1996) 205

[3] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. $(2)$ 124 (1986) 71

[4] F Bonahon, J P Otal, Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. London Math. Soc. 20 (1988) 255

[5] J Brock, K Bromberg, R Evans, J Souto, Tameness on the boundary and Ahlfors' measure conjecture, Publ. Math. Inst. Hautes Études Sci. (2003) 145

[6] R D Canary, M Culler, S Hersonsky, P B Shalen, Approximation by maximal cusps in boundaries of deformation spaces of Kleinian groups, J. Differential Geom. 64 (2003) 57

[7] R D Canary, S Hersonsky, Ubiquity of geometric finiteness in boundaries of deformation spaces of hyperbolic 3–manifolds, Amer. J. Math. 126 (2004) 1193

[8] T Comar, Hyperbolic Dehn surgery and convergence of Kleinian groups, PhD thesis, University of Michigan (1996)

[9] M Culler, Lifting representations to covering groups, Adv. in Math. 59 (1986) 64

[10] R Evans, Weakly type-preserving sequences and strong convergence, Geom. Dedicata 108 (2004) 71

[11] W M Goldman, Ergodic theory on moduli spaces, Ann. of Math. $(2)$ 146 (1997) 475

[12] W M Goldman, The complex-symplectic geometry of $\mathrm{SL}(2,\mathbb C)$-characters over surfaces, from: "Algebraic groups and arithmetic", Tata Inst. Fund. Res. (2004) 375

[13] M Heusener, J Porti, The variety of characters in $\mathrm{PSL}_2(\mathbb C)$, Bol. Soc. Mat. Mexicana $(3)$ 10 (2004) 221

[14] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)

[15] S P Kerckhoff, W P Thurston, Noncontinuity of the action of the modular group at Bers' boundary of Teichmüller space, Invent. Math. 100 (1990) 25

[16] C Mcmullen, Cusps are dense, Ann. of Math. $(2)$ 133 (1991) 217

[17] C T Mcmullen, Renormalization and 3–manifolds which fiber over the circle, Annals of Mathematics Studies 142, Princeton University Press (1996)

[18] C T Mcmullen, Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc. 11 (1998) 283

[19] J P Otal, Thurston's hyperbolization of Haken manifolds, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 77

[20] D Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259

[21] D Sullivan, Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985) 243

[22] W Thurston, The geometry and topology of 3–manifolds, Princeton University lecture notes (1976–1979)

[23] W Thurston, Hyperbolic structures on 3–manifolds II: Surface groups and 3–manifolds which fiber over the circle (1986)

[24] P Tukia, The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984) 127

Cité par Sources :