Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the action of the mapping class group on the boundary of quasifuchsian space . Among other results, is shown to be topologically transitive on the subset of manifolds without a conformally compact end. We also prove that any open subset of the character variety intersecting does not admit a nonconstant –invariant meromorphic function. This is related to a question of Goldman.
Souto, Juan 1 ; Storm, Peter 2
@article{GT_2006_10_2_a3, author = {Souto, Juan and Storm, Peter}, title = {Dynamics of the mapping class group action on the variety of {PSL2\ensuremath{\mathbb{C}}} characters}, journal = {Geometry & topology}, pages = {715--736}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2006}, doi = {10.2140/gt.2006.10.715}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.715/} }
TY - JOUR AU - Souto, Juan AU - Storm, Peter TI - Dynamics of the mapping class group action on the variety of PSL2ℂ characters JO - Geometry & topology PY - 2006 SP - 715 EP - 736 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.715/ DO - 10.2140/gt.2006.10.715 ID - GT_2006_10_2_a3 ER -
%0 Journal Article %A Souto, Juan %A Storm, Peter %T Dynamics of the mapping class group action on the variety of PSL2ℂ characters %J Geometry & topology %D 2006 %P 715-736 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.715/ %R 10.2140/gt.2006.10.715 %F GT_2006_10_2_a3
Souto, Juan; Storm, Peter. Dynamics of the mapping class group action on the variety of PSL2ℂ characters. Geometry & topology, Tome 10 (2006) no. 2, pp. 715-736. doi : 10.2140/gt.2006.10.715. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.715/
[1] A brief survey of the deformation theory of Kleinian groups, from: "The Epstein birthday schrift (Warwick 1997)" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1 (1998) 23
,[2] Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126 (1996) 205
, ,[3] Bouts des variétés hyperboliques de dimension 3, Ann. of Math. $(2)$ 124 (1986) 71
,[4] Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. London Math. Soc. 20 (1988) 255
, ,[5] Tameness on the boundary and Ahlfors' measure conjecture, Publ. Math. Inst. Hautes Études Sci. (2003) 145
, , , ,[6] Approximation by maximal cusps in boundaries of deformation spaces of Kleinian groups, J. Differential Geom. 64 (2003) 57
, , , ,[7] Ubiquity of geometric finiteness in boundaries of deformation spaces of hyperbolic 3–manifolds, Amer. J. Math. 126 (2004) 1193
, ,[8] Hyperbolic Dehn surgery and convergence of Kleinian groups, PhD thesis, University of Michigan (1996)
,[9] Lifting representations to covering groups, Adv. in Math. 59 (1986) 64
,[10] Weakly type-preserving sequences and strong convergence, Geom. Dedicata 108 (2004) 71
,[11] Ergodic theory on moduli spaces, Ann. of Math. $(2)$ 146 (1997) 475
,[12] The complex-symplectic geometry of $\mathrm{SL}(2,\mathbb C)$-characters over surfaces, from: "Algebraic groups and arithmetic", Tata Inst. Fund. Res. (2004) 375
,[13] The variety of characters in $\mathrm{PSL}_2(\mathbb C)$, Bol. Soc. Mat. Mexicana $(3)$ 10 (2004) 221
, ,[14] Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)
,[15] Noncontinuity of the action of the modular group at Bers' boundary of Teichmüller space, Invent. Math. 100 (1990) 25
, ,[16] Cusps are dense, Ann. of Math. $(2)$ 133 (1991) 217
,[17] Renormalization and 3–manifolds which fiber over the circle, Annals of Mathematics Studies 142, Princeton University Press (1996)
,[18] Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc. 11 (1998) 283
,[19] Thurston's hyperbolization of Haken manifolds, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 77
,[20] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259
,[21] Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985) 243
,[22] The geometry and topology of 3–manifolds, Princeton University lecture notes (1976–1979)
,[23] Hyperbolic structures on 3–manifolds II: Surface groups and 3–manifolds which fiber over the circle (1986)
,[24] The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984) 127
,Cité par Sources :