A note on knot Floer homology of links
Geometry & topology, Tome 10 (2006) no. 2, pp. 695-713.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Ozsváth and Szabó proved that knot Floer homology determines the genera of knots in S3. We will generalize this deep result to links in homology 3–spheres, by adapting their method. Our proof relies on a result of Gabai and some constructions related to foliations. We also interpret a theorem of Kauffman in the world of knot Floer homology, hence we can compute the top filtration term of the knot Floer homology for alternative links.

DOI : 10.2140/gt.2006.10.695
Keywords: knot Floer homology, links, homology 3–sphere, maximal Euler characteristic, taut foliations, alternative links

Ni, Yi 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
@article{GT_2006_10_2_a2,
     author = {Ni, Yi},
     title = {A note on knot {Floer} homology of links},
     journal = {Geometry & topology},
     pages = {695--713},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.695},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.695/}
}
TY  - JOUR
AU  - Ni, Yi
TI  - A note on knot Floer homology of links
JO  - Geometry & topology
PY  - 2006
SP  - 695
EP  - 713
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.695/
DO  - 10.2140/gt.2006.10.695
ID  - GT_2006_10_2_a2
ER  - 
%0 Journal Article
%A Ni, Yi
%T A note on knot Floer homology of links
%J Geometry & topology
%D 2006
%P 695-713
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.695/
%R 10.2140/gt.2006.10.695
%F GT_2006_10_2_a2
Ni, Yi. A note on knot Floer homology of links. Geometry & topology, Tome 10 (2006) no. 2, pp. 695-713. doi : 10.2140/gt.2006.10.695. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.695/

[1] P R Cromwell, Homogeneous links, J. London Math. Soc. $(2)$ 39 (1989) 535

[2] Y Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277

[3] Y M Eliashberg, W P Thurston, Confoliations, University Lecture Series 13, American Mathematical Society (1998)

[4] J B Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73

[5] D Gabai, private communication

[6] D Gabai, The Murasugi sum is a natural geometric operation, from: "Low-dimensional topology (San Francisco, CA 1981)", Contemp. Math. 20, Amer. Math. Soc. (1983) 131

[7] D Gabai, Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479

[8] L H Kauffman, Formal knot theory, Mathematical Notes 30, Princeton University Press (1983)

[9] M Khovanov, L Rozansky, Matrix factorizations and link homology II

[10] P Ozsváth, Z Szabó, Knot Floer homology and integer surgeries

[11] P Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225

[12] P Ozsváth, Z Szabó, Heegaard diagrams and holomorphic disks, from: "Different faces of geometry", Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York (2004) 301

[13] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[14] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[15] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[16] P Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1

[17] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39

[18] J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[19] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990)

[20] J R Stallings, Constructions of fibred knots and links, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 2", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 55

[21] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)

Cité par Sources :