Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a building of uniform thickness . –Betti numbers of are reinterpreted as von-Neumann dimensions of weighted –cohomology of the underlying Coxeter group. The dimension is measured with the help of the Hecke algebra. The weight depends on the thickness . The weighted cohomology makes sense for all real positive values of , and is computed for small . If the Davis complex of the Coxeter group is a manifold, a version of Poincaré duality allows to deduce that the –cohomology of a building with large thickness is concentrated in the top dimension.
Dymara, Jan 1
@article{GT_2006_10_2_a1, author = {Dymara, Jan}, title = {Thin buildings}, journal = {Geometry & topology}, pages = {667--694}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2006}, doi = {10.2140/gt.2006.10.667}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.667/} }
Dymara, Jan. Thin buildings. Geometry & topology, Tome 10 (2006) no. 2, pp. 667-694. doi : 10.2140/gt.2006.10.667. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.667/
[1] Éléments de mathématique. Fasc XXXIV, Groupes et algèbres de Lie, Chapitres IV–VI, Actualités Scientifiques et Industrielles 1337, Hermann (1968)
,[2] Buildings, Springer (1989)
,[3] Reciprocity of growth functions of Coxeter groups, Geom. Dedicata 39 (1991) 373
, ,[4] Buildings are \rmCAT(0), from: "Geometry and cohomology in group theory" (editors P Kropholler, G Niblo, R Stohr), LMS Lecture Note Series 252, Cambridge University Press (1998) 108
,[5] Weighted $L^2$–cohomology of Coxeter groups,
, , , ,[6] Vanishing theorems and conjectures for the $\ell^ 2$-homology of right-angled Coxeter groups, Geom. Topol. 5 (2001) 7
, ,[7] Les $C^*$–algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Cie, Éditeur-Imprimeur, Paris (1964)
,[8] Cohomology of buildings and of their automorphism groups, Invent. Math. 150 (2002) 579
, ,[9] $L^2$–invariants: theory and applications to geometry and $K$–theory, Ergebnisse series 44, Springer (2002)
,[10] Hyperbolic Coxeter groups, PhD thesis, the Ohio State University (1987)
,[11] Lectures on buildings, Perspectives in Mathematics 7, Academic Press (1989)
,[12] Cohomologie des groupes discrets, from: "Prospects in mathematics, Proc. Sympos. (Princeton, N.J. 1970)", Ann. of Math. Studies 70, Princeton Univ. Press (1971) 77
,Cité par Sources :