Thin buildings
Geometry & topology, Tome 10 (2006) no. 2, pp. 667-694.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a building of uniform thickness q + 1. L2–Betti numbers of X are reinterpreted as von-Neumann dimensions of weighted L2–cohomology of the underlying Coxeter group. The dimension is measured with the help of the Hecke algebra. The weight depends on the thickness q. The weighted cohomology makes sense for all real positive values of q, and is computed for small q. If the Davis complex of the Coxeter group is a manifold, a version of Poincaré duality allows to deduce that the L2–cohomology of a building with large thickness is concentrated in the top dimension.

DOI : 10.2140/gt.2006.10.667
Keywords: building, $L^2$-cohomology, Hecke algebra

Dymara, Jan 1

1 Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
@article{GT_2006_10_2_a1,
     author = {Dymara, Jan},
     title = {Thin buildings},
     journal = {Geometry & topology},
     pages = {667--694},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.667},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.667/}
}
TY  - JOUR
AU  - Dymara, Jan
TI  - Thin buildings
JO  - Geometry & topology
PY  - 2006
SP  - 667
EP  - 694
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.667/
DO  - 10.2140/gt.2006.10.667
ID  - GT_2006_10_2_a1
ER  - 
%0 Journal Article
%A Dymara, Jan
%T Thin buildings
%J Geometry & topology
%D 2006
%P 667-694
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.667/
%R 10.2140/gt.2006.10.667
%F GT_2006_10_2_a1
Dymara, Jan. Thin buildings. Geometry & topology, Tome 10 (2006) no. 2, pp. 667-694. doi : 10.2140/gt.2006.10.667. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.667/

[1] N Bourbaki, Éléments de mathématique. Fasc XXXIV, Groupes et algèbres de Lie, Chapitres IV–VI, Actualités Scientifiques et Industrielles 1337, Hermann (1968)

[2] K S Brown, Buildings, Springer (1989)

[3] R Charney, M W Davis, Reciprocity of growth functions of Coxeter groups, Geom. Dedicata 39 (1991) 373

[4] M W Davis, Buildings are \rmCAT(0), from: "Geometry and cohomology in group theory" (editors P Kropholler, G Niblo, R Stohr), LMS Lecture Note Series 252, Cambridge University Press (1998) 108

[5] M W Davis, J Dymara, T Januszkiewicz, B Okun, Weighted $L^2$–cohomology of Coxeter groups,

[6] M W Davis, B Okun, Vanishing theorems and conjectures for the $\ell^ 2$-homology of right-angled Coxeter groups, Geom. Topol. 5 (2001) 7

[7] J Dixmier, Les $C^*$–algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Cie, Éditeur-Imprimeur, Paris (1964)

[8] J Dymara, T Januszkiewicz, Cohomology of buildings and of their automorphism groups, Invent. Math. 150 (2002) 579

[9] W Lück, $L^2$–invariants: theory and applications to geometry and $K$–theory, Ergebnisse series 44, Springer (2002)

[10] G Moussong, Hyperbolic Coxeter groups, PhD thesis, the Ohio State University (1987)

[11] M Ronan, Lectures on buildings, Perspectives in Mathematics 7, Academic Press (1989)

[12] J P Serre, Cohomologie des groupes discrets, from: "Prospects in mathematics, Proc. Sympos. (Princeton, N.J. 1970)", Ann. of Math. Studies 70, Princeton Univ. Press (1971) 77

Cité par Sources :