Nonstabilized Nielsen coincidence invariants and Hopf–Ganea homomorphisms
Geometry & topology, Tome 10 (2006) no. 2, pp. 619-666.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. We extend it to pairs (f1,f2) of maps between manifolds of arbitrary dimensions, using nonstabilized normal bordism theory as our main tool. This leads to estimates of the minimum numbers MCC(f1,f2) (and MC(f1,f2), resp.) of path components (and of points, resp.) in the coincidence sets of those pairs of maps which are homotopic to (f1,f2). Furthermore, we deduce finiteness conditions for MC(f1,f2). As an application we compute both minimum numbers explicitly in various concrete geometric sample situations.

The Nielsen decomposition of a coincidence set is induced by the decomposition of a certain path space E(f1,f2) into path components. Its higher dimensional topology captures further crucial geometric coincidence data. In the setting of homotopy groups the resulting invariants are closely related to certain Hopf–Ganea homomorphisms which turn out to yield finiteness obstructions for MC.

DOI : 10.2140/gt.2006.10.619
Keywords: coincidence manifold, normal bordism, path space, Nielsen number, Ganea-Hopf invariant

Koschorke, Ulrich 1

1 Universität Siegen, Emmy Noether Campus, Walter-Flex-Str. 3, D-57068 Siegen, Germany
@article{GT_2006_10_2_a0,
     author = {Koschorke, Ulrich},
     title = {Nonstabilized {Nielsen} coincidence invariants and {Hopf{\textendash}Ganea} homomorphisms},
     journal = {Geometry & topology},
     pages = {619--666},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.619},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.619/}
}
TY  - JOUR
AU  - Koschorke, Ulrich
TI  - Nonstabilized Nielsen coincidence invariants and Hopf–Ganea homomorphisms
JO  - Geometry & topology
PY  - 2006
SP  - 619
EP  - 666
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.619/
DO  - 10.2140/gt.2006.10.619
ID  - GT_2006_10_2_a0
ER  - 
%0 Journal Article
%A Koschorke, Ulrich
%T Nonstabilized Nielsen coincidence invariants and Hopf–Ganea homomorphisms
%J Geometry & topology
%D 2006
%P 619-666
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.619/
%R 10.2140/gt.2006.10.619
%F GT_2006_10_2_a0
Koschorke, Ulrich. Nonstabilized Nielsen coincidence invariants and Hopf–Ganea homomorphisms. Geometry & topology, Tome 10 (2006) no. 2, pp. 619-666. doi : 10.2140/gt.2006.10.619. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.619/

[1] M F Atiyah, R Bott, A Shapiro, Clifford modules, Topology 3 (1964) 3

[2] S A Bogatyĭ, D L Gonçalves, Z H., Coincidence theory: the minimization problem, Tr. Mat. Inst. Steklova 225 (1999) 52

[3] R B S Brooks, On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy, Pacific J. Math. 40 (1972) 45

[4] R F Brown, Wecken properties for manifolds, from: "Nielsen theory and dynamical systems (South Hadley, MA, 1992)", Contemp. Math. 152, Amer. Math. Soc. (1993) 9

[5] R F Brown, H Schirmer, Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary, Topology Appl. 46 (1992) 65

[6] O Cornea, New obstructions to the thickening of CW–complexes, Proc. Amer. Math. Soc. 132 (2004) 2769

[7] O Cornea, G Lupton, J Oprea, D Tanré, Lusternik–Schnirelmann category, Mathematical Surveys and Monographs 103, American Mathematical Society (2003)

[8] A Dold, D L Gonçalves, Self-coincidence of fibre maps, Osaka J. Math. 42 (2005) 291

[9] L Fernández-Suárez, A Gómez-Tato, D Tanré, Hopf–Ganea invariants and weak LS category, Topology Appl. 115 (2001) 305

[10] T Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965) 295

[11] M J Greenberg, J R Harper, Algebraic topology, Mathematics Lecture Note Series 58, Benjamin/Cummings Publishing Co. Advanced Book Program (1981)

[12] A Hatcher, F Quinn, Bordism invariants of intersections of submanifolds, Trans. Amer. Math. Soc. 200 (1974) 327

[13] P J Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955) 154

[14] J Jezierski, The least number of coincidence points on surfaces, J. Austral. Math. Soc. Ser. A 58 (1995) 27

[15] B Jiang, Fixed points and braids, Invent. Math. 75 (1984) 69

[16] B J Jiang, Fixed points and braids II, Math. Ann. 272 (1985) 249

[17] U Koschorke, Vector fields and other vector bundle morphisms—a singularity approach, Lecture Notes in Mathematics 847, Springer (1981)

[18] U Koschorke, Coincidence theory in arbitrary codimensions: the minimizing problem, Oberwolfach Reports (2004)

[19] U Koschorke, Linking and coincidence invariants, Fund. Math. 184 (2004) 187

[20] U Koschorke, Selfcoincidences in higher codimensions, J. Reine Angew. Math. 576 (2004) 1

[21] U Koschorke, Geometric and homotopy theoretic methods in Nielsen coincidence theory, Fixed Point Theory and Appl. to appear (2006)

[22] U Koschorke, Nielsen coincidence theory in arbitrary codimensions, J. Reine Angew. Math., to appear (2006)

[23] U Koschorke, B Sanderson, Geometric interpretations of the generalized Hopf invariant, Math. Scand. 41 (1977) 199

[24] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)

[25] A Wyler, Sur certaines singularités d'applications de variétés topologiques, Comment. Math. Helv. 42 (1967) 28

Cité par Sources :