Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Suppose is a compact orientable irreducible –manifold with Heegaard splitting surfaces and . Then either is isotopic to a possibly stabilized or boundary-stabilized copy of or the distance .
More generally, if and are bicompressible but weakly incompressible connected closed separating surfaces in then either
(i) and can be well-separated or
(ii) and are isotopic or
(iii) .
Scharlemann, Martin 1 ; Tomova, Maggy 2
@article{GT_2006_10_1_a15, author = {Scharlemann, Martin and Tomova, Maggy}, title = {Alternate {Heegaard} genus bounds distance}, journal = {Geometry & topology}, pages = {593--617}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2006}, doi = {10.2140/gt.2006.10.593}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.593/} }
TY - JOUR AU - Scharlemann, Martin AU - Tomova, Maggy TI - Alternate Heegaard genus bounds distance JO - Geometry & topology PY - 2006 SP - 593 EP - 617 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.593/ DO - 10.2140/gt.2006.10.593 ID - GT_2006_10_1_a15 ER -
Scharlemann, Martin; Tomova, Maggy. Alternate Heegaard genus bounds distance. Geometry & topology, Tome 10 (2006) no. 1, pp. 593-617. doi : 10.2140/gt.2006.10.593. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.593/
[1] Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. 16 (1983)
, ,[2] Reducing Heegaard splittings, Topology Appl. 27 (1987) 275
, ,[3] A polytopal generalization of Sperner’s lemma, J. Combin. Theory Ser. A 100 (2002) 1
, , ,[4] Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002) 61
,[5] 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631 | DOI
,[6] Heights of simple loops and pseudo–Anosov homeomorphisms, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 327
,[7] On boundary primitive manifolds and a theorem of Casson–Gordon, Topology Appl. 125 (2002) 571 | DOI
,[8] Comparing Heegaard splittings of non–Haken 3–manifolds, Topology 35 (1996) 1005 | DOI
, ,[9] Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math. to appear
,[10] Heegaard splittings of (surface) ×I are standard, Math. Ann. 295 (1993) 549 | DOI
, ,Cité par Sources :