Alternate Heegaard genus bounds distance
Geometry & topology, Tome 10 (2006) no. 1, pp. 593-617.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Suppose M is a compact orientable irreducible 3–manifold with Heegaard splitting surfaces P and Q. Then either Q is isotopic to a possibly stabilized or boundary-stabilized copy of P or the distance d(P) 2genus(Q).

More generally, if P and Q are bicompressible but weakly incompressible connected closed separating surfaces in M then either

(i) P and Q can be well-separated or

(ii) P and Q are isotopic or

(iii) d(P) 2genus(Q).

DOI : 10.2140/gt.2006.10.593
Keywords: Heegaard splitting, Heegaard distance, strongly irreducible, handlebody, weakly incompressible

Scharlemann, Martin 1 ; Tomova, Maggy 2

1 Mathematics Department, University of California, Santa Barbara, CA 93106, USA
2 Mathematics Department, University of Iowa, Iowa City, IA 52242, USA
@article{GT_2006_10_1_a15,
     author = {Scharlemann, Martin and Tomova, Maggy},
     title = {Alternate {Heegaard} genus bounds distance},
     journal = {Geometry & topology},
     pages = {593--617},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     doi = {10.2140/gt.2006.10.593},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.593/}
}
TY  - JOUR
AU  - Scharlemann, Martin
AU  - Tomova, Maggy
TI  - Alternate Heegaard genus bounds distance
JO  - Geometry & topology
PY  - 2006
SP  - 593
EP  - 617
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.593/
DO  - 10.2140/gt.2006.10.593
ID  - GT_2006_10_1_a15
ER  - 
%0 Journal Article
%A Scharlemann, Martin
%A Tomova, Maggy
%T Alternate Heegaard genus bounds distance
%J Geometry & topology
%D 2006
%P 593-617
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.593/
%R 10.2140/gt.2006.10.593
%F GT_2006_10_1_a15
Scharlemann, Martin; Tomova, Maggy. Alternate Heegaard genus bounds distance. Geometry & topology, Tome 10 (2006) no. 1, pp. 593-617. doi : 10.2140/gt.2006.10.593. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.593/

[1] F Bonahon, J P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. 16 (1983)

[2] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275

[3] J A De Loera, E Peterson, F E Su, A polytopal generalization of Sperner’s lemma, J. Combin. Theory Ser. A 100 (2002) 1

[4] K Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002) 61

[5] J Hempel, 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631 | DOI

[6] T Kobayashi, Heights of simple loops and pseudo–Anosov homeomorphisms, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 327

[7] Y Moriah, On boundary primitive manifolds and a theorem of Casson–Gordon, Topology Appl. 125 (2002) 571 | DOI

[8] H Rubinstein, M Scharlemann, Comparing Heegaard splittings of non–Haken 3–manifolds, Topology 35 (1996) 1005 | DOI

[9] M Scharlemann, Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math. to appear

[10] M Scharlemann, A Thompson, Heegaard splittings of (surface) ×I are standard, Math. Ann. 295 (1993) 549 | DOI

Cité par Sources :