Manifolds with non-stable fundamental groups at infinity, III
Geometry & topology, Tome 10 (2006) no. 1, pp. 541-556.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We continue our study of ends non-compact manifolds. The over-arching aim is to provide an appropriate generalization of Siebenmann’s famous collaring theorem that applies to manifolds having non-stable fundamental group systems at infinity. In this paper a primary goal is finally achieved; namely, a complete characterization of pseudo-collarability for manifolds of dimension at least 6.

DOI : 10.2140/gt.2006.10.541
Keywords: manifold, end, tame, inward tame, open collar, pseudo-collar, semistable, Mittag-Leffler, perfect group, perfectly semistable, Siebenmann's thesis, Wall finiteness obstruction, Quillen's plus construction

Guilbault, Craig R 1 ; Tinsley, Frederick C 2

1 Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
2 Department of Mathematics, The Colorado College, Colorado Springs, Colorado 80903, USA
@article{GT_2006_10_1_a13,
     author = {Guilbault, Craig R and Tinsley, Frederick C},
     title = {Manifolds with non-stable fundamental groups at infinity, {III}},
     journal = {Geometry & topology},
     pages = {541--556},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     doi = {10.2140/gt.2006.10.541},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.541/}
}
TY  - JOUR
AU  - Guilbault, Craig R
AU  - Tinsley, Frederick C
TI  - Manifolds with non-stable fundamental groups at infinity, III
JO  - Geometry & topology
PY  - 2006
SP  - 541
EP  - 556
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.541/
DO  - 10.2140/gt.2006.10.541
ID  - GT_2006_10_1_a13
ER  - 
%0 Journal Article
%A Guilbault, Craig R
%A Tinsley, Frederick C
%T Manifolds with non-stable fundamental groups at infinity, III
%J Geometry & topology
%D 2006
%P 541-556
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.541/
%R 10.2140/gt.2006.10.541
%F GT_2006_10_1_a13
Guilbault, Craig R; Tinsley, Frederick C. Manifolds with non-stable fundamental groups at infinity, III. Geometry & topology, Tome 10 (2006) no. 1, pp. 541-556. doi : 10.2140/gt.2006.10.541. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.541/

[1] T A Chapman, L C Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976) 171

[2] M M Cohen, A course in simple-homotopy theory, Springer (1973)

[3] E H Connell, A topological h–cobordism theorem for n ≥ 5, Illinois J. Math. 11 (1967) 300

[4] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton University Press (1990)

[5] C R Guilbault, Compactifications of manifolds with boundary, in progress

[6] C R Guilbault, An open collar theorem for 4–manifolds, Trans. Amer. Math. Soc. 331 (1992) 227

[7] C R Guilbault, Manifolds with non-stable fundamental groups at infinity, Geom. Topol. 4 (2000) 537 | DOI

[8] C R Guilbault, F C Tinsley, Manifolds with non-stable fundamental groups at infinity. II, Geom. Topol. 7 (2003) 255 | DOI

[9] S Kwasik, R Schultz, Desuspension of group actions and the ribbon theorem, Topology 27 (1988) 443 | DOI

[10] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358

[11] D Quillen, Cohomology of groups, from: "Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2", Gauthier-Villars (1971) 47

[12] C P Rourke, B J Sanderson, Introduction to piecewise-linear topology, , Springer (1982)

[13] L Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, PhD thesis, Princeton University (1965)

[14] J R Stallings, On infinite processes leading to differentiability in the complement of a point, from: "Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse)", Princeton Univ. Press (1965) 245

[15] T W Tucker, Non-compact 3–manifolds and the missing-boundary problem, Topology 13 (1974) 267 | DOI

[16] C T C Wall, Finiteness conditions for CW–complexes, Ann. of Math. 81 (1965) 56

Cité par Sources :