Stabilization in the braid groups I: MTWS
Geometry & topology, Tome 10 (2006) no. 1, pp. 413-540.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Choose any oriented link type X and closed braid representatives X+,X of X, where X has minimal braid index among all closed braid representatives of X. The main result of this paper is a ‘Markov theorem without stabilization’. It asserts that there is a complexity function and a finite set of ‘templates’ such that (possibly after initial complexity-reducing modifications in the choice of X+ and X which replace them with closed braids X+,X) there is a sequence of closed braid representatives X+ = X1 X2 Xr = X such that each passage Xi Xi+1 is strictly complexity reducing and non-increasing on braid index. The templates which define the passages Xi Xi+1 include 3 familiar ones, the destabilization, exchange move and flype templates, and in addition, for each braid index m 4 a finite set T (m) of new ones. The number of templates in T (m) is a non-decreasing function of m. We give examples of members of T (m),m 4, but not a complete listing. There are applications to contact geometry, which will be given in a separate paper.

DOI : 10.2140/gt.2006.10.413
Keywords: knot, links, braids, stabilization, Markov's theorem, braid foliations, flypes, exchange moves

Birman, Joan S 1 ; Menasco, William W 2

1 Department of Mathematics, Barnard College, Columbia University, 2990 Broadway, New York NY 10027, USA
2 Department of Mathematics, University at Buffalo, Buffalo NY 14260, USA
@article{GT_2006_10_1_a12,
     author = {Birman, Joan S and Menasco, William W},
     title = {Stabilization in the braid groups {I:} {MTWS}},
     journal = {Geometry & topology},
     pages = {413--540},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     doi = {10.2140/gt.2006.10.413},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.413/}
}
TY  - JOUR
AU  - Birman, Joan S
AU  - Menasco, William W
TI  - Stabilization in the braid groups I: MTWS
JO  - Geometry & topology
PY  - 2006
SP  - 413
EP  - 540
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.413/
DO  - 10.2140/gt.2006.10.413
ID  - GT_2006_10_1_a12
ER  - 
%0 Journal Article
%A Birman, Joan S
%A Menasco, William W
%T Stabilization in the braid groups I: MTWS
%J Geometry & topology
%D 2006
%P 413-540
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.413/
%R 10.2140/gt.2006.10.413
%F GT_2006_10_1_a12
Birman, Joan S; Menasco, William W. Stabilization in the braid groups I: MTWS. Geometry & topology, Tome 10 (2006) no. 1, pp. 413-540. doi : 10.2140/gt.2006.10.413. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.413/

[1] J W Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA 9 (1923) 93

[2] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[3] J S Birman, Braids, links, and mapping class groups, Princeton University Press (1974)

[4] J S Birman, E Finkelstein, Studying surfaces via closed braids, J. Knot Theory Ramifications 7 (1998) 267 | DOI

[5] J S Birman, M D Hirsch, A new algorithm for recognizing the unknot, Geom. Topol. 2 (1998) 175 | DOI

[6] J S Birman, W W Menasco, Stabilization in the braid groups II: Applications to transverse knots,

[7] J S Birman, W W Menasco, Studying links via closed braids IV : Composite links and split links, Invent. Math. 102 (1990) 115 | DOI

[8] J S Birman, W W Menasco, Studying links via closed braids I : A finiteness theorem, Pacific J. Math. 154 (1992) 17

[9] J S Birman, W W Menasco, Studying links via closed braids V : The unlink, Trans. Amer. Math. Soc. 329 (1992) 585 | DOI

[10] J S Birman, W W Menasco, Studying links via closed braids VI : A nonfiniteness theorem, Pacific J. Math. 156 (1992) 265

[11] J S Birman, W W Menasco, Studying links via closed braids III : Classifying links which are closed 3–braids, Pacific J. Math. 161 (1993) 25

[12] J S Birman, W W Menasco, On Markov’s theorem, J. Knot Theory Ramifications 11 (2002) 295 | DOI

[13] J S Birman, M Rampichini, P Boldi, S Vigna, Towards an implementation of the B–H algorithm for recognizing the unknot, J. Knot Theory Ramifications 11 (2002) 601 | DOI

[14] J S Birman, N C Wrinkle, On transversally simple knots, J. Differential Geom. 55 (2000) 325

[15] G Burde, H Zieschang, Knots, 5, Walter de Gruyter Co. (1985)

[16] P R Cromwell, Embedding knots and links in an open book I : Basic properties, Topology Appl. 64 (1995) 37 | DOI

[17] I Dynnikov, Arc presentations of links: monotonic simplification,

[18] T Fiedler, A small state sum for knots, Topology 32 (1993) 281 | DOI

[19] J Hempel, 3–Manifolds, Princeton University Press (1976)

[20] K Kawamuro, Failure of the Morton–Franks–Williams inequality,

[21] R Kirby, A calculus for framed links in S3, Invent. Math. 45 (1978) 35 | DOI

[22] S Lambropoulou, C P Rourke, Markov’s theorem in 3–manifolds, Topology Appl. 78 (1997) 95 | DOI

[23] A A Markov, Uber die freie Aquivalenz geschlossener Zopfe, Recueil Mathematique Moscou 1 (1935) 73

[24] W W Menasco, Closed braids and Heegaard splittings, from: "Knots, braids, and mapping class groups—papers dedicated to Joan S. Birman (New York, 1998)", AMS/IP Stud. Adv. Math. 24, Amer. Math. Soc. (2001) 131

[25] W W Menasco, On iterated torus knots and transversal knots, Geom. Topol. 5 (2001) 651 | DOI

[26] H R Morton, Infinitely many fibred knots having the same Alexander polynomial, Topology 17 (1978) 101 | DOI

[27] H R Morton, An irreducible 4–string braid with unknotted closure, Math. Proc. Cambridge Philos. Soc. 93 (1983) 259 | DOI

[28] H R Morton, Threading knot diagrams, Math. Proc. Cambridge Philos. Soc. 99 (1986) 247 | DOI

[29] M Scharlemann, A Thompson, Thin position and Heegaard splittings of the 3–sphere, J. Differential Geom. 39 (1994) 343

[30] J Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933) 88 | DOI

[31] P Traczyk, A new proof of Markov’s braid theorem, from: "Knot theory (Warsaw, 1995)", Banach Center Publ. 42, Polish Acad. Sci. (1998) 409

[32] F Waldhausen, Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195 | DOI

[33] J Zablow, Loops, waves and an algebra for Heegaard splittings, PhD thesis, City University of New York (1999)

Cité par Sources :