Generic uniqueness of least area planes in hyperbolic space
Geometry & topology, Tome 10 (2006) no. 1, pp. 401-412.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the number of solutions of the asymptotic Plateau problem in 3. By using the analytical results in our previous paper, and some topological arguments, we show that there exists an open dense subset of C3 Jordan curves in S2(3) such that any curve in this set bounds a unique least area plane in 3.

DOI : 10.2140/gt.2006.10.401
Keywords: least area plane, asymptotic Plateau problem

Coskunuzer, Baris 1

1 Department of Mathematics, Yale University, New Haven CT 06520, USA
@article{GT_2006_10_1_a11,
     author = {Coskunuzer, Baris},
     title = {Generic uniqueness of least area planes in hyperbolic space},
     journal = {Geometry & topology},
     pages = {401--412},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     doi = {10.2140/gt.2006.10.401},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.401/}
}
TY  - JOUR
AU  - Coskunuzer, Baris
TI  - Generic uniqueness of least area planes in hyperbolic space
JO  - Geometry & topology
PY  - 2006
SP  - 401
EP  - 412
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.401/
DO  - 10.2140/gt.2006.10.401
ID  - GT_2006_10_1_a11
ER  - 
%0 Journal Article
%A Coskunuzer, Baris
%T Generic uniqueness of least area planes in hyperbolic space
%J Geometry & topology
%D 2006
%P 401-412
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.401/
%R 10.2140/gt.2006.10.401
%F GT_2006_10_1_a11
Coskunuzer, Baris. Generic uniqueness of least area planes in hyperbolic space. Geometry & topology, Tome 10 (2006) no. 1, pp. 401-412. doi : 10.2140/gt.2006.10.401. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.401/

[1] M T Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982) 477 | DOI

[2] M T Anderson, Complete minimal hypersurfaces in hyperbolic n–manifolds, Comment. Math. Helv. 58 (1983) 264 | DOI

[3] B Coskunuzer, Uniform 1–cochains and genuine laminations,

[4] B Coskunuzer, Minimal planes in hyperbolic space, Comm. Anal. Geom. 12 (2004) 821

[5] D Gabai, On the geometric and topological rigidity of hyperbolic 3–manifolds, J. Amer. Math. Soc. 10 (1997) 37 | DOI

[6] R Hardt, F H Lin, Regularity at infinity for area-minimizing hypersurfaces in hyperbolic space, Invent. Math. 88 (1987) 217 | DOI

[7] J Hass, P Scott, The existence of least area surfaces in 3–manifolds, Trans. Amer. Math. Soc. 310 (1988) 87 | DOI

[8] S Lang, Real analysis, Addison-Wesley (1983)

[9] U Lang, The asymptotic Plateau problem in Gromov hyperbolic manifolds, Calc. Var. Partial Differential Equations 16 (2003) 31 | DOI

[10] X Li-Jost, Uniqueness of minimal surfaces in Euclidean and hyperbolic 3–space, Math. Z. 217 (1994) 275 | DOI

[11] P Li, L F Tam, Uniqueness and regularity of proper harmonic maps, Ann. of Math. 137 (1993) 167 | DOI

[12] P Li, L F Tam, Uniqueness and regularity of proper harmonic maps II, Indiana Univ. Math. J. 42 (1993) 591 | DOI

[13] F H Lin, Plateau’s problem for H–convex curves, Manuscripta Math. 58 (1987) 497 | DOI

[14] F H Lin, On the Dirichlet problem for minimal graphs in hyperbolic space, Invent. Math. 96 (1989) 593 | DOI

[15] W H Meeks Iii, S T Yau, The classical Plateau problem and the topology of three-dimensional manifolds., Topology 21 (1982) 409 | DOI

[16] C B Morrey Jr, The problem of Plateau on a Riemannian manifold, Ann. of Math. 49 (1948) 807 | DOI

[17] S Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965) 861 | DOI

[18] F Tomi, A J Tromba, Extreme curves bound embedded minimal surfaces of the type of the disc, Math. Z. 158 (1978) 137 | DOI

[19] Y Tonegawa, Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space, Math. Z. 221 (1996) 591 | DOI

Cité par Sources :