Infinitely many universally tight contact manifolds with trivial Ozsváth–Szabó contact invariants
Geometry & topology, Tome 10 (2006) no. 1, pp. 335-357.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this article we present infinitely many 3–manifolds admitting infinitely many universally tight contact structures each with trivial Ozsváth–Szabó contact invariants. By known properties of these invariants the contact structures constructed here are non weakly symplectically fillable.

DOI : 10.2140/gt.2006.10.335
Keywords: contact structure, tight, Ozsváth–Szabó invariant, symplectically fillable

Ghiggini, Paolo 1

1 CIRGET, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal (Québec) H3C 3P8, Canada
@article{GT_2006_10_1_a9,
     author = {Ghiggini, Paolo},
     title = {Infinitely many universally tight contact manifolds with trivial {Ozsv\'ath{\textendash}Szab\'o} contact invariants},
     journal = {Geometry & topology},
     pages = {335--357},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     doi = {10.2140/gt.2006.10.335},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.335/}
}
TY  - JOUR
AU  - Ghiggini, Paolo
TI  - Infinitely many universally tight contact manifolds with trivial Ozsváth–Szabó contact invariants
JO  - Geometry & topology
PY  - 2006
SP  - 335
EP  - 357
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.335/
DO  - 10.2140/gt.2006.10.335
ID  - GT_2006_10_1_a9
ER  - 
%0 Journal Article
%A Ghiggini, Paolo
%T Infinitely many universally tight contact manifolds with trivial Ozsváth–Szabó contact invariants
%J Geometry & topology
%D 2006
%P 335-357
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.335/
%R 10.2140/gt.2006.10.335
%F GT_2006_10_1_a9
Ghiggini, Paolo. Infinitely many universally tight contact manifolds with trivial Ozsváth–Szabó contact invariants. Geometry & topology, Tome 10 (2006) no. 1, pp. 335-357. doi : 10.2140/gt.2006.10.335. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.335/

[1] V Colin, Sur la torsion des structures de contact tendues, Ann. Sci. École Norm. Sup. 34 (2001) 267 | DOI

[2] V Colin, K Honda, Constructions contrôlées de champs de Reeb et applications,

[3] F Ding, H Geiges, A Legendrian surgery presentation of contact 3–manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583 | DOI

[4] J B Etnyre, K Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609 | DOI

[5] J B Etnyre, L L Ng, Problems in low dimensional contact topology, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 337

[6] P Ghiggini, Ozsváth–Szabó invariants and fillability of contact structures, Math. Z. 253 (2006) 159 | DOI

[7] P Ghiggini, P Lisca, A I Stipsicz, Classification of tight contact structures on some small Seifert 3-manifolds,

[8] P Ghiggini, P Lisca, A I Stipsicz, Classification of tight contact structures on small Seifert 3–manifolds with e0 ≥ 0, Proc. Amer. Math. Soc. 134 (2006) 909 | DOI

[9] P Ghiggini, S Schönenberger, On the classification of tight contact structures, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 121

[10] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619

[11] A Hatcher, Notes on Basic 3–Manifold Topology,

[12] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515 | DOI

[13] K Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309 | DOI

[14] K Honda, On the classification of tight contact structures. II, J. Differential Geom. 55 (2000) 83

[15] K Honda, W H Kazez, G Matić, Convex decomposition theory, Int. Math. Res. Not. (2002) 55 | DOI

[16] P Lisca, G Matić, Transverse contact structures on Seifert 3–manifolds, Algebr. Geom. Topol. 4 (2004) 1125 | DOI

[17] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact three-manifolds II,

[18] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact three-manifolds III,

[19] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact three-manifolds I, Geom. Topol. 8 (2004) 925 | DOI

[20] P Lisca, A I Stipsicz, Seifert fibered contact three-manifolds via surgery, Algebr. Geom. Topol. 4 (2004) 199 | DOI

[21] P Orlik, Seifert manifolds, Springer (1972)

[22] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds,

[23] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 | DOI

[24] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[25] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159

[26] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027

[27] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39

[28] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401

[29] W P Thurston, H E Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345

[30] H Wu, Legendrian vertical circles in small Seifert spaces,

Cité par Sources :