Pro–p groups and towers of rational homology spheres
Geometry & topology, Tome 10 (2006) no. 1, pp. 331-334 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

In the preceding paper, Calegari and Dunfield exhibit a sequence of hyperbolic 3–manifolds which have increasing injectivity radius, and which, subject to some conjectures in number theory, are rational homology spheres. We prove unconditionally that these manifolds are rational homology spheres, and give a sufficient condition for a tower of hyperbolic 3–manifolds to have first Betti number 0 at each level. The methods involved are purely pro–p group theoretical.

DOI : 10.2140/gt.2006.10.331
Keywords: pro–$p$ group, hyperbolic 3–manifold, rational homology sphere

Boston, Nigel 1 ; Ellenberg, Jordan S 1

1 Department of Mathematics, University of Wisconsin, Van Vleck Hall, 480 Lincoln Drive, Madison WI 53706, USA
@article{10_2140_gt_2006_10_331,
     author = {Boston, Nigel and Ellenberg, Jordan S},
     title = {Pro{\textendash}p groups and towers of rational homology spheres},
     journal = {Geometry & topology},
     pages = {331--334},
     year = {2006},
     volume = {10},
     number = {1},
     doi = {10.2140/gt.2006.10.331},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.331/}
}
TY  - JOUR
AU  - Boston, Nigel
AU  - Ellenberg, Jordan S
TI  - Pro–p groups and towers of rational homology spheres
JO  - Geometry & topology
PY  - 2006
SP  - 331
EP  - 334
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.331/
DO  - 10.2140/gt.2006.10.331
ID  - 10_2140_gt_2006_10_331
ER  - 
%0 Journal Article
%A Boston, Nigel
%A Ellenberg, Jordan S
%T Pro–p groups and towers of rational homology spheres
%J Geometry & topology
%D 2006
%P 331-334
%V 10
%N 1
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.331/
%R 10.2140/gt.2006.10.331
%F 10_2140_gt_2006_10_331
Boston, Nigel; Ellenberg, Jordan S. Pro–p groups and towers of rational homology spheres. Geometry & topology, Tome 10 (2006) no. 1, pp. 331-334. doi: 10.2140/gt.2006.10.331

[1] F Calegari, N M Dunfield, Automorphic forms and rational homology 3–spheres, Geom. Topol. 10 (2006) 295 | DOI

[2] J D Dixon, M P F Du Sautoy, A Mann, D Segal, Analytic pro-p groups, 61, Cambridge University Press (1999)

[3] R C Kirby, Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[4] J P Labesse, J Schwermer, On liftings and cusp cohomology of arithmetic groups, Invent. Math. 83 (1986) 383 | DOI

[5] A Lubotzky, Group presentation, p–adic analytic groups and lattices in SL2(C), Ann. of Math. 118 (1983) 115

[6] A Lubotzky, Eigenvalues of the Laplacian, the first Betti number and the congruence subgroup problem, Ann. of Math. 144 (1996) 441

[7] C Maclachlan, A W Reid, The arithmetic of hyperbolic 3–manifolds, 219, Springer (2003)

Cité par Sources :