Distortion in transformation groups
Geometry & topology, Tome 10 (2006) no. 1, pp. 267-293.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We exhibit rigid rotations of spheres as distortion elements in groups of diffeomorphisms, thereby answering a question of J Franks and M Handel. We also show that every homeomorphism of a sphere is, in a suitable sense, as distorted as possible in the group Homeo(Sn, thought of as a discrete group.

An appendix by Y de Cornulier shows that Homeo(Sn has the strong boundedness property, recently introduced by G Bergman. This means that every action of the discrete group Homeo(Sn on a metric space by isometries has bounded orbits.

DOI : 10.2140/gt.2006.10.267
Keywords: distortion, transformation groups, Pixton action, Bergman property

Calegari, Danny 1 ; Freedman, Michael H 2

1 Department of Mathematics, California Institute of Technology, Pasadena CA 91125, USA
2 Microsoft Research, 1 Microsoft Way, Redmond WA 98052, USA
@article{GT_2006_10_1_a6,
     author = {Calegari, Danny and Freedman, Michael H},
     title = {Distortion in transformation groups},
     journal = {Geometry & topology},
     pages = {267--293},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     doi = {10.2140/gt.2006.10.267},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.267/}
}
TY  - JOUR
AU  - Calegari, Danny
AU  - Freedman, Michael H
TI  - Distortion in transformation groups
JO  - Geometry & topology
PY  - 2006
SP  - 267
EP  - 293
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.267/
DO  - 10.2140/gt.2006.10.267
ID  - GT_2006_10_1_a6
ER  - 
%0 Journal Article
%A Calegari, Danny
%A Freedman, Michael H
%T Distortion in transformation groups
%J Geometry & topology
%D 2006
%P 267-293
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.267/
%R 10.2140/gt.2006.10.267
%F GT_2006_10_1_a6
Calegari, Danny; Freedman, Michael H. Distortion in transformation groups. Geometry & topology, Tome 10 (2006) no. 1, pp. 267-293. doi : 10.2140/gt.2006.10.267. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.267/

[1] G M Bergman, Generating infinite symmetric groups, Bull. London Math. Soc. (to appear)

[2] Y De Cornulier, Strongly bounded groups and infinite powers of finite groups, Comm. Algebra (to appear)

[3] M Droste, W C Holland, Generating automorphism groups of chains, Forum Math. 17 (2005) 699

[4] J Franks, M Handel, Distortion elements in group actions on surfaces,

[5] F Galvin, Generating countable sets of permutations, J. London Math. Soc. 51 (1995) 230

[6] J M Gambaudo, É Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004) 1591 | DOI

[7] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[8] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[9] A Kechris, C Rosendal, Turbulence, amalgamation and generic automorphisms of homogeneous structures,

[10] A Khelif, À propos de la propriété de Bergman, preprint

[11] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press (1977)

[12] N Kopell, Commuting diffeomorphisms, from: "Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)", Amer. Math. Soc. (1970) 165

[13] S Lang, Algebra, 211, Springer (2002)

[14] A Lubotzky, S Mozes, M S Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. (2000)

[15] G D Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press (1973)

[16] A Y Ol’Shanskii, Distortion functions for subgroups, from: "Geometric group theory down under (Canberra, 1996)", de Gruyter (1999) 281

[17] D Pixton, Nonsmoothable, unstable group actions, Trans. Amer. Math. Soc. 229 (1977) 259

[18] M Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, 180, Cambridge University Press (1993)

[19] L Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655 | DOI

[20] F Quinn, Ends of maps III : Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503

[21] D Repovš, E Ščepin, A proof of the Hilbert–Smith conjecture for actions by Lipschitz maps, Math. Ann. 308 (1997) 361 | DOI

[22] C Rosendal, A topological version of the Bergman Property,

[23] J P Serre, Arbres, amalgames, SL2, Société Mathématique de France (1977)

[24] Y G Sinaĭ, Topics in ergodic theory, 44, Princeton University Press (1994)

[25] T Tsuboi, Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle, J. Math. Soc. Japan 47 (1995) 1

Cité par Sources :