Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We exhibit rigid rotations of spheres as distortion elements in groups of diffeomorphisms, thereby answering a question of J Franks and M Handel. We also show that every homeomorphism of a sphere is, in a suitable sense, as distorted as possible in the group Homeo(S, thought of as a discrete group.
An appendix by Y de Cornulier shows that Homeo(S has the strong boundedness property, recently introduced by G Bergman. This means that every action of the discrete group Homeo(S on a metric space by isometries has bounded orbits.
Calegari, Danny 1 ; Freedman, Michael H 2
@article{GT_2006_10_1_a6, author = {Calegari, Danny and Freedman, Michael H}, title = {Distortion in transformation groups}, journal = {Geometry & topology}, pages = {267--293}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2006}, doi = {10.2140/gt.2006.10.267}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.267/} }
Calegari, Danny; Freedman, Michael H. Distortion in transformation groups. Geometry & topology, Tome 10 (2006) no. 1, pp. 267-293. doi : 10.2140/gt.2006.10.267. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.267/
[1] Generating infinite symmetric groups, Bull. London Math. Soc. (to appear)
,[2] Strongly bounded groups and infinite powers of finite groups, Comm. Algebra (to appear)
,[3] Generating automorphism groups of chains, Forum Math. 17 (2005) 699
, ,[4] Distortion elements in group actions on surfaces,
, ,[5] Generating countable sets of permutations, J. London Math. Soc. 51 (1995) 230
,[6] Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004) 1591 | DOI
, ,[7] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[8] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[9] Turbulence, amalgamation and generic automorphisms of homogeneous structures,
, ,[10] À propos de la propriété de Bergman, preprint
,[11] Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press (1977)
, ,[12] Commuting diffeomorphisms, from: "Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)", Amer. Math. Soc. (1970) 165
,[13] Algebra, 211, Springer (2002)
,[14] The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. (2000)
, , ,[15] Strong rigidity of locally symmetric spaces, Princeton University Press (1973)
,[16] Distortion functions for subgroups, from: "Geometric group theory down under (Canberra, 1996)", de Gruyter (1999) 281
,[17] Nonsmoothable, unstable group actions, Trans. Amer. Math. Soc. 229 (1977) 259
,[18] Lectures on ergodic theory and Pesin theory on compact manifolds, 180, Cambridge University Press (1993)
,[19] Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655 | DOI
,[20] Ends of maps III : Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503
,[21] A proof of the Hilbert–Smith conjecture for actions by Lipschitz maps, Math. Ann. 308 (1997) 361 | DOI
, ,[22] A topological version of the Bergman Property,
,[23] Arbres, amalgames, SL2, Société Mathématique de France (1977)
,[24] Topics in ergodic theory, 44, Princeton University Press (1994)
,[25] Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle, J. Math. Soc. Japan 47 (1995) 1
,Cité par Sources :