Duality for Legendrian contact homology
Geometry & topology, Tome 10 (2006) no. 4, pp. 2351-2381.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The main result of this paper is that, off of a “fundamental class” in degree 1, the linearized Legendrian contact homology obeys a version of Poincaré duality between homology groups in degrees k and k. Not only does the result itself simplify calculations, but its proof also establishes a framework for analyzing cohomology operations on the linearized Legendrian contact homology.

DOI : 10.2140/gt.2006.10.2351
Keywords: contact homology, legendrian knot, duality

Sabloff, Joshua M 1

1 Haverford College, Haverford, PA 19041, USA
@article{GT_2006_10_4_a9,
     author = {Sabloff, Joshua M},
     title = {Duality for {Legendrian} contact homology},
     journal = {Geometry & topology},
     pages = {2351--2381},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2006},
     doi = {10.2140/gt.2006.10.2351},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2351/}
}
TY  - JOUR
AU  - Sabloff, Joshua M
TI  - Duality for Legendrian contact homology
JO  - Geometry & topology
PY  - 2006
SP  - 2351
EP  - 2381
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2351/
DO  - 10.2140/gt.2006.10.2351
ID  - GT_2006_10_4_a9
ER  - 
%0 Journal Article
%A Sabloff, Joshua M
%T Duality for Legendrian contact homology
%J Geometry & topology
%D 2006
%P 2351-2381
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2351/
%R 10.2140/gt.2006.10.2351
%F GT_2006_10_4_a9
Sabloff, Joshua M. Duality for Legendrian contact homology. Geometry & topology, Tome 10 (2006) no. 4, pp. 2351-2381. doi : 10.2140/gt.2006.10.2351. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2351/

[1] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[2] M Betz, R L Cohen, Graph moduli spaces and cohomology operations, Turkish J. Math. 18 (1994) 23

[3] F Bourgeois, A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001)", Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55

[4] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[5] F Ding, H Geiges, Legendrian knots and links classified by classical invariants

[6] T Ekholm, J Etnyre, M Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453

[7] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)", Doc. Math. Extra Vol. II (1998) 327

[8] Y Eliashberg, M Fraser, Classification of topologically trivial Legendrian knots, from: "Geometry, topology, and dynamics (Montreal, PQ, 1995)", CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17

[9] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[10] J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory", Elsevier (2005) 105

[11] J B Etnyre, K Honda, Knots and contact geometry I: Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63

[12] J B Etnyre, L L Ng, J M Sabloff, Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002) 321

[13] D Fuchs, Chekanov–Eliashberg invariant of Legendrian knots: existence of augmentations, J. Geom. Phys. 47 (2003) 43

[14] D Fuchs, T Ishkhanov, Invariants of Legendrian knots and decompositions of front diagrams, Mosc. Math. J. 4 (2004) 707, 783

[15] K Fukaya, Y G Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96

[16] T Kálmán, Contact homology and one parameter families of Legendrian knots, Geom. Topol. 9 (2005) 2013

[17] P Melvin, S Shrestha, The nonuniqueness of Chekanov polynomials of Legendrian knots, Geom. Topol. 9 (2005) 1221

[18] K Mishachev, The $N$–copy of a topologically trivial Legendrian knot, J. Symplectic Geom. 1 (2003) 659

[19] L L Ng, Computable Legendrian invariants, Topology 42 (2003) 55

[20] J M Sabloff, Invariants for Legendrian Knots from Contact Homology

[21] J M Sabloff, Invariants of Legendrian knots in circle bundles, Commun. Contemp. Math. 5 (2003) 569

[22] J M Sabloff, Augmentations and rulings of Legendrian knots, Int. Math. Res. Not. (2005) 1157

[23] M Schwarz, Morse homology, Progress in Mathematics 111, Birkhäuser (1993)

Cité par Sources :