Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The main result of this paper is that, off of a “fundamental class” in degree , the linearized Legendrian contact homology obeys a version of Poincaré duality between homology groups in degrees and . Not only does the result itself simplify calculations, but its proof also establishes a framework for analyzing cohomology operations on the linearized Legendrian contact homology.
Sabloff, Joshua M 1
@article{GT_2006_10_4_a9, author = {Sabloff, Joshua M}, title = {Duality for {Legendrian} contact homology}, journal = {Geometry & topology}, pages = {2351--2381}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2006}, doi = {10.2140/gt.2006.10.2351}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2351/} }
Sabloff, Joshua M. Duality for Legendrian contact homology. Geometry & topology, Tome 10 (2006) no. 4, pp. 2351-2381. doi : 10.2140/gt.2006.10.2351. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2351/
[1] Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87
,[2] Graph moduli spaces and cohomology operations, Turkish J. Math. 18 (1994) 23
, ,[3] A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001)", Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55
,[4] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441
,[5] Legendrian knots and links classified by classical invariants
, ,[6] Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453
, , ,[7] Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)", Doc. Math. Extra Vol. II (1998) 327
,[8] Classification of topologically trivial Legendrian knots, from: "Geometry, topology, and dynamics (Montreal, PQ, 1995)", CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17
, ,[9] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[10] Legendrian and transversal knots, from: "Handbook of knot theory", Elsevier (2005) 105
,[11] Knots and contact geometry I: Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63
, ,[12] Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002) 321
, , ,[13] Chekanov–Eliashberg invariant of Legendrian knots: existence of augmentations, J. Geom. Phys. 47 (2003) 43
,[14] Invariants of Legendrian knots and decompositions of front diagrams, Mosc. Math. J. 4 (2004) 707, 783
, ,[15] Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96
, ,[16] Contact homology and one parameter families of Legendrian knots, Geom. Topol. 9 (2005) 2013
,[17] The nonuniqueness of Chekanov polynomials of Legendrian knots, Geom. Topol. 9 (2005) 1221
, ,[18] The $N$–copy of a topologically trivial Legendrian knot, J. Symplectic Geom. 1 (2003) 659
,[19] Computable Legendrian invariants, Topology 42 (2003) 55
,[20] Invariants for Legendrian Knots from Contact Homology
,[21] Invariants of Legendrian knots in circle bundles, Commun. Contemp. Math. 5 (2003) 569
,[22] Augmentations and rulings of Legendrian knots, Int. Math. Res. Not. (2005) 1157
,[23] Morse homology, Progress in Mathematics 111, Birkhäuser (1993)
,Cité par Sources :