Universal circles for quasigeodesic flows
Geometry & topology, Tome 10 (2006) no. 4, pp. 2271-2298.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if M is a hyperbolic 3–manifold which admits a quasigeodesic flow, then π1(M) acts faithfully on a universal circle by homeomorphisms, and preserves a pair of invariant laminations of this circle. As a corollary, we show that the Thurston norm can be characterized by quasigeodesic flows, thereby generalizing a theorem of Mosher, and we give the first example of a closed hyperbolic 3–manifold without a quasigeodesic flow, answering a long-standing question of Thurston.

DOI : 10.2140/gt.2006.10.2271
Keywords: quasigeodesic flows, universal circles, laminations, Thurston norm, 3-manifolds

Calegari, Danny 1

1 Department of Mathematics, California Institute of Technology, Pasadena CA, 91125, USA
@article{GT_2006_10_4_a7,
     author = {Calegari, Danny},
     title = {Universal circles for quasigeodesic flows},
     journal = {Geometry & topology},
     pages = {2271--2298},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2006},
     doi = {10.2140/gt.2006.10.2271},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2271/}
}
TY  - JOUR
AU  - Calegari, Danny
TI  - Universal circles for quasigeodesic flows
JO  - Geometry & topology
PY  - 2006
SP  - 2271
EP  - 2298
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2271/
DO  - 10.2140/gt.2006.10.2271
ID  - GT_2006_10_4_a7
ER  - 
%0 Journal Article
%A Calegari, Danny
%T Universal circles for quasigeodesic flows
%J Geometry & topology
%D 2006
%P 2271-2298
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2271/
%R 10.2140/gt.2006.10.2271
%F GT_2006_10_4_a7
Calegari, Danny. Universal circles for quasigeodesic flows. Geometry & topology, Tome 10 (2006) no. 4, pp. 2271-2298. doi : 10.2140/gt.2006.10.2271. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2271/

[1] D Calegari, The geometry of $\mathbf{R}$–covered foliations, Geom. Topol. 4 (2000) 457

[2] D Calegari, Circular groups, planar groups, and the Euler class, from: "Proceedings of the Casson Fest (Arkansas and Texas, 2003)" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 431

[3] D Calegari, N M Dunfield, Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003) 149

[4] J Cannon, W Thurston, Group invariant peano curves, preprint (1985)

[5] S R Fenley, Laminar free hyperbolic 3–manifolds

[6] S R Fenley, Anosov flows in 3–manifolds, Ann. of Math. $(2)$ 139 (1994) 79

[7] S R Fenley, Foliations, topology and geometry of 3–manifolds: $\mathbb{R}$–covered foliations and transverse pseudo–Anosov flows, Comment. Math. Helv. 77 (2002) 415

[8] S Fenley, L Mosher, Quasigeodesic flows in hyperbolic 3–manifolds, Topology 40 (2001) 503

[9] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[10] D Gabai, W H Kazez, The finiteness of the mapping class group for atoroidal 3–manifolds with genuine laminations, J. Differential Geom. 50 (1998) 123

[11] D Gabai, W H Kazez, Group negative curvature for 3–manifolds with genuine laminations, Geom. Topol. 2 (1998) 65

[12] D Gabai, U Oertel, Essential laminations in 3–manifolds, Ann. of Math. $(2)$ 130 (1989) 41

[13] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[14] D Husemoller, Fibre bundles, Graduate Texts in Mathematics 20, Springer (1994)

[15] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)

[16] J Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958) 215

[17] J W Milnor, J D Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press (1974)

[18] L Mosher, Laminations and flows transverse to finite depth foliations, Part I: Branched surfaces and dynamics

[19] L Mosher, Dynamical systems and the homology norm of a 3–manifold. I. Efficient intersection of surfaces and flows, Duke Math. J. 65 (1992) 449

[20] L Mosher, Dynamical systems and the homology norm of a 3–manifold II, Invent. Math. 107 (1992) 243

[21] L Mosher, Examples of quasi-geodesic flows on hyperbolic 3–manifolds, from: "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 227

[22] U Oertel, Homology branched surfaces: Thurston's norm on $H_2(M^3)$, from: "Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press (1986) 253

[23] E H Spanier, Algebraic topology, McGraw-Hill Book Co. (1966)

[24] W P Thurston, Hyperbolic Structures on 3–manifolds, II: Surface groups and 3–manifolds which fiber over the circle

[25] W P Thurston, Three-manifolds, Foliations and Circles, II

[26] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)

[27] R L Wilder, Topology of manifolds, American Mathematical Society Colloquium Publications 32, American Mathematical Society (1979)

[28] J W Wood, Foliations on 3–manifolds, Ann. of Math. $(2)$ 89 (1969) 336

[29] A Zeghib, Sur les feuilletages géodésiques continus des variétés hyperboliques, Invent. Math. 114 (1993) 193

Cité par Sources :