Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if is a hyperbolic –manifold which admits a quasigeodesic flow, then acts faithfully on a universal circle by homeomorphisms, and preserves a pair of invariant laminations of this circle. As a corollary, we show that the Thurston norm can be characterized by quasigeodesic flows, thereby generalizing a theorem of Mosher, and we give the first example of a closed hyperbolic –manifold without a quasigeodesic flow, answering a long-standing question of Thurston.
Calegari, Danny 1
@article{GT_2006_10_4_a7, author = {Calegari, Danny}, title = {Universal circles for quasigeodesic flows}, journal = {Geometry & topology}, pages = {2271--2298}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2006}, doi = {10.2140/gt.2006.10.2271}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2271/} }
Calegari, Danny. Universal circles for quasigeodesic flows. Geometry & topology, Tome 10 (2006) no. 4, pp. 2271-2298. doi : 10.2140/gt.2006.10.2271. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2271/
[1] The geometry of $\mathbf{R}$–covered foliations, Geom. Topol. 4 (2000) 457
,[2] Circular groups, planar groups, and the Euler class, from: "Proceedings of the Casson Fest (Arkansas and Texas, 2003)" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 431
,[3] Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003) 149
, ,[4] Group invariant peano curves, preprint (1985)
, ,[5] Laminar free hyperbolic 3–manifolds
,[6] Anosov flows in 3–manifolds, Ann. of Math. $(2)$ 139 (1994) 79
,[7] Foliations, topology and geometry of 3–manifolds: $\mathbb{R}$–covered foliations and transverse pseudo–Anosov flows, Comment. Math. Helv. 77 (2002) 415
,[8] Quasigeodesic flows in hyperbolic 3–manifolds, Topology 40 (2001) 503
, ,[9] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[10] The finiteness of the mapping class group for atoroidal 3–manifolds with genuine laminations, J. Differential Geom. 50 (1998) 123
, ,[11] Group negative curvature for 3–manifolds with genuine laminations, Geom. Topol. 2 (1998) 65
, ,[12] Essential laminations in 3–manifolds, Ann. of Math. $(2)$ 130 (1989) 41
, ,[13] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[14] Fibre bundles, Graduate Texts in Mathematics 20, Springer (1994)
,[15] Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)
,[16] On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958) 215
,[17] Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press (1974)
, ,[18] Laminations and flows transverse to finite depth foliations, Part I: Branched surfaces and dynamics
,[19] Dynamical systems and the homology norm of a 3–manifold. I. Efficient intersection of surfaces and flows, Duke Math. J. 65 (1992) 449
,[20] Dynamical systems and the homology norm of a 3–manifold II, Invent. Math. 107 (1992) 243
,[21] Examples of quasi-geodesic flows on hyperbolic 3–manifolds, from: "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 227
,[22] Homology branched surfaces: Thurston's norm on $H_2(M^3)$, from: "Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press (1986) 253
,[23] Algebraic topology, McGraw-Hill Book Co. (1966)
,[24] Hyperbolic Structures on 3–manifolds, II: Surface groups and 3–manifolds which fiber over the circle
,[25] Three-manifolds, Foliations and Circles, II
,[26] A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)
,[27] Topology of manifolds, American Mathematical Society Colloquium Publications 32, American Mathematical Society (1979)
,[28] Foliations on 3–manifolds, Ann. of Math. $(2)$ 89 (1969) 336
,[29] Sur les feuilletages géodésiques continus des variétés hyperboliques, Invent. Math. 114 (1993) 193
,Cité par Sources :