Three-manifolds, virtual homology, and group determinants
Geometry & topology, Tome 10 (2006) no. 4, pp. 2247-2269.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We apply representation theory to study the homology of equivariant Dehn-fillings of a given finite, regular cover of a compact 3–manifold with boundary a torus. This yields a polynomial which gives the rank of the part of the homology carried by the solid tori used for Dehn-filling. The polynomial is a symmetrized form of the group determinant studied by Frobenius and Dedekind. As a corollary every such hyperbolic 3–manifold has infinitely many virtually Haken Dehn-fillings.

DOI : 10.2140/gt.2006.10.2247
Keywords: Group determinant, Dehn-filling, virtually Haken

Cooper, Daryl 1 ; Walsh, Genevieve S 2

1 Math Department, UCSB, Santa Barbara, CA 93106, USA
2 Department of Math, Tufts University, Medford, MA 02155, USA, and, Département de Mathématiques, UQAM, Montréal, QC H3C 3J7, Canada
@article{GT_2006_10_4_a6,
     author = {Cooper, Daryl and Walsh, Genevieve S},
     title = {Three-manifolds, virtual homology, and group determinants},
     journal = {Geometry & topology},
     pages = {2247--2269},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2006},
     doi = {10.2140/gt.2006.10.2247},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2247/}
}
TY  - JOUR
AU  - Cooper, Daryl
AU  - Walsh, Genevieve S
TI  - Three-manifolds, virtual homology, and group determinants
JO  - Geometry & topology
PY  - 2006
SP  - 2247
EP  - 2269
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2247/
DO  - 10.2140/gt.2006.10.2247
ID  - GT_2006_10_4_a6
ER  - 
%0 Journal Article
%A Cooper, Daryl
%A Walsh, Genevieve S
%T Three-manifolds, virtual homology, and group determinants
%J Geometry & topology
%D 2006
%P 2247-2269
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2247/
%R 10.2140/gt.2006.10.2247
%F GT_2006_10_4_a6
Cooper, Daryl; Walsh, Genevieve S. Three-manifolds, virtual homology, and group determinants. Geometry & topology, Tome 10 (2006) no. 4, pp. 2247-2269. doi : 10.2140/gt.2006.10.2247. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2247/

[1] M Burrow, Representation theory of finite groups, Academic Press (1965)

[2] D Cooper, C D Hodgson, S P Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs 5, Mathematical Society of Japan (2000)

[3] D Cooper, D D Long, Virtually Haken Dehn-filling, J. Differential Geom. 52 (1999) 173

[4] D Cooper, G S Walsh, Virtually Haken fillings and semi-bundles, Geom. Topol. 10 (2006) 2237

[5] N M Dunfield, W P Thurston, The virtual Haken conjecture: experiments and examples, Geom. Topol. 7 (2003) 399

[6] K W Johnson, The Dedekind–Frobenius group determinant: new life in an old problem, from: "Groups St. Andrews 1997 in Bath, II", London Math. Soc. Lecture Note Ser. 261, Cambridge Univ. Press (1999) 417

[7] T Y Lam, Representations of finite groups: a hundred years I, Notices Amer. Math. Soc. 45 (1998) 361

[8] D D Long, A W Reid, Simple quotients of hyperbolic 3–manifold groups, Proc. Amer. Math. Soc. 126 (1998) 877

[9] R Riley, Parabolic representations of knot groups I, Proc. London Math. Soc. $(3)$ 24 (1972) 217

[10] J A Sjogren, Connectivity and spectrum in a graph with a regular automorphism group of odd order, Internat. J. Algebra Comput. 4 (1994) 529

[11] J A Wolf, Spaces of constant curvature, Publish or Perish (1974)

Cité par Sources :