Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Suppose that is a fibered three-manifold whose fiber is a surface of positive genus with one boundary component. Assume that is not a semi-bundle. We show that infinitely many fillings of along are virtually Haken. It follows that infinitely many Dehn-surgeries of any non-trivial knot in the three-sphere are virtually Haken.
Cooper, Daryl 1 ; Walsh, Genevieve S 2
@article{GT_2006_10_4_a5, author = {Cooper, Daryl and Walsh, Genevieve S}, title = {Virtually {Haken} fillings and semi-bundles}, journal = {Geometry & topology}, pages = {2237--2245}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2006}, doi = {10.2140/gt.2006.10.2237}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2237/} }
TY - JOUR AU - Cooper, Daryl AU - Walsh, Genevieve S TI - Virtually Haken fillings and semi-bundles JO - Geometry & topology PY - 2006 SP - 2237 EP - 2245 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2237/ DO - 10.2140/gt.2006.10.2237 ID - GT_2006_10_4_a5 ER -
Cooper, Daryl; Walsh, Genevieve S. Virtually Haken fillings and semi-bundles. Geometry & topology, Tome 10 (2006) no. 4, pp. 2237-2245. doi : 10.2140/gt.2006.10.2237. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2237/
[1] Virtually Haken Dehn-filling, J. Differential Geom. 52 (1999) 173
, ,[2] Three-manifolds, virtual homology, and the group determinant, Geom. Topol. 10 (2006) 2247
, ,[3] Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237
, , , ,[4] Reducible manifolds and Dehn surgery, Topology 35 (1996) 385
, ,[5] Surfaces minimizing area in their homology class and group actions on 3–manifolds, Math. Z. 199 (1988) 501
,[6] Fundamental groups of 3–manifolds which are extensions, Ann. of Math. $(2)$ 95 (1972) 86
, ,[7] Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. $(2)$ 116 (1982) 621
, , ,[8] Spaces of constant curvature, Publish or Perish (1974)
,[9] Immersed essential surfaces and Dehn surgery, Topology 43 (2004) 319
,[10] Semibundle decompositions of 3–manifolds and the twisted cofundamental group, Topology Appl. 79 (1997) 159
,[11] Seifert 3–manifolds that are bundles and semi-bundles, Houston J. Math. 27 (2001) 533
,Cité par Sources :