Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove the existence of Sasakian metrics with positive Ricci curvature on certain highly connected odd dimensional manifolds. In particular, we show that manifolds homeomorphic to the 2k–fold connected sum of admit Sasakian metrics with positive Ricci curvature for all k. Furthermore, a formula for computing the diffeomorphism types is given and tables are presented for dimensions 7 and 11.
Boyer, Charles P 1 ; Galicki, Krzysztof 1
@article{GT_2006_10_4_a4, author = {Boyer, Charles P and Galicki, Krzysztof}, title = {Highly connected manifolds with positive {Ricci} curvature}, journal = {Geometry & topology}, pages = {2219--2235}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2006}, doi = {10.2140/gt.2006.10.2219}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2219/} }
TY - JOUR AU - Boyer, Charles P AU - Galicki, Krzysztof TI - Highly connected manifolds with positive Ricci curvature JO - Geometry & topology PY - 2006 SP - 2219 EP - 2235 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2219/ DO - 10.2140/gt.2006.10.2219 ID - GT_2006_10_4_a4 ER -
Boyer, Charles P; Galicki, Krzysztof. Highly connected manifolds with positive Ricci curvature. Geometry & topology, Tome 10 (2006) no. 4, pp. 2219-2235. doi : 10.2140/gt.2006.10.2219. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2219/
[1] Simply connected five-manifolds, Ann. of Math. $(2)$ 82 (1965) 365
,[2] Relations amongst Toda brackets and the Kervaire invariant in dimension 62, J. London Math. Soc. $(2)$ 30 (1984) 533
, , ,[3] New Einstein metrics in dimension five, J. Differential Geom. 57 (2001) 443
, ,[4] Rational homology 5–spheres with positive Ricci curvature, Math. Res. Lett. 9 (2002) 521
, ,[5] New Einstein metrics on $8\#(S^2\times S^3)$, Differential Geom. Appl. 19 (2003) 245
, ,[6] Sasakian geometry, hypersurface singularities, and Einstein metrics, Rend. Circ. Mat. Palermo $(2)$ Suppl. (2005) 57
, ,[7] Einstein metrics on rational homology spheres, J. Differential Geom. 74 (2006) 353
, ,[8] Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press (2007)
, ,[9] Einstein metrics on spheres, Ann. of Math. $(2)$ 162 (2005) 557
, , ,[10] Einstein metrics on exotic spheres in dimensions 7, 11, and 15, Experiment. Math. 14 (2005) 59
, , , ,[11] Einstein metrics on rational homology 7–spheres, Ann. Inst. Fourier (Grenoble) 52 (2002) 1569
, , ,[12] Sasakian–Einstein structures on $9\#(S^2\times S^3)$, Trans. Amer. Math. Soc. 354 (2002) 2983
, , ,[13] On positive Sasakian geometry, Geom. Dedicata 101 (2003) 93
, , ,[14] On the geometry of Sasakian–Einstein 5–manifolds, Math. Ann. 325 (2003) 485
, , ,[15] Sasakian geometry, homotopy spheres and positive Ricci curvature, Topology 42 (2003) 981
, , ,[16] Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966) 1
,[17] The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. $(2)$ 90 (1969) 157
,[18] The classification of highly connected manifolds in dimension 7 and 15, PhD thesis, Indiana University (2001)
,[19] Diffeomorphism Classification of Isolated Hypersurfaces Singularities, PhD thesis, Cornell University (1971)
,[20] Bilinear and quadratic forms on torsion modules, Advances in Math. 25 (1977) 133
,[21] Periodicity of branched cyclic covers, Math. Ann. 218 (1975) 157
, ,[22] Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990) 57
,[23] Cohomogeneity one manifolds with positive Ricci curvature, Invent. Math. 149 (2002) 619
, ,[24] Singularities and exotic spheres, from: "Séminaire Bourbaki, Vol. 10", Soc. Math. France (1995) 13
,[25] The Atiyah–Singer theorem and elementary number theory, Mathematics Lecture Series 3, Publish or Perish (1974)
, ,[26] Products of knots, branched fibrations and sums of singularities, Topology 16 (1977) 369
, ,[27] Groups of homotopy spheres I, Ann. of Math. $(2)$ 77 (1963) 504
, ,[28] Einstein metrics on connected sums of $S^2{\times}S^3$, J. Differential Geom. to appear
,[29] Einstein metrics on five-dimensional Seifert bundles, J. Geom. Anal. 15 (2005) 445
,[30] Circle actions on simply connected 5–manifolds, Topology 45 (2006) 643
,[31] Differentiable structures on manifolds, from: "Surveys on surgery theory, Vol. 1", Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 73
,[32] Some differentials in the Adams spectral sequence, Topology 6 (1967) 349
, ,[33] Lectures on the $h$–cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press (1965)
,[34] Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton University Press (1968)
,[35] On the 3–dimensional Brieskorn manifolds $M(p,q,r)$, from: "Knots, groups, and 3–manifolds (Papers dedicated to the memory of R H Fox)" (editor L P Neuwirth), Annals of Mathematics Studies 84, Princeton University Press (1975) 175
,[36] Metrics of positive scalar curvature and connections with surgery, from: "Surveys on surgery theory, Vol. 2", Annals of Mathematics Studies 149, Princeton Univ. Press (2001) 353
, ,[37] Metrics of positive Ricci curvature on quotient spaces, Math. Ann. 330 (2004) 59
, ,[38] Un résultat sur la monodromie, Invent. Math. 13 (1971) 90
, ,[39] Positive Ricci curvature on the connected sums of $S^n{\times}S^m$, J. Differential Geom. 33 (1991) 127
, ,[40] On the structure of manifolds, Amer. J. Math. 84 (1962) 387
,[41] Classification of $(n-1)$–connected $2n$–manifolds, Ann. of Math. $(2)$ 75 (1962) 163
,[42] Classification problems in differential topology VI: Classification of $(s-1)$–connected $(2s+1)$–manifolds, Topology 6 (1967) 273
,[43] Closed $(s-1)$–connected $(2s+1)$–manifolds, $s=3, 7$, Bull. London Math. Soc. 4 (1972) 27
,Cité par Sources :