Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We calculate the monodromies of the canonical Lefschetz pencils on a pair of homeomorphic Horikawa surfaces. We show in particular that the (pluri)canonical pencils on these surfaces have the same monodromy groups, and are related by a “partial twisting” operation.
Auroux, Denis 1
@article{GT_2006_10_4_a3, author = {Auroux, Denis}, title = {The canonical pencils on {Horikawa} surfaces}, journal = {Geometry & topology}, pages = {2173--2217}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2006}, doi = {10.2140/gt.2006.10.2173}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2173/} }
Auroux, Denis. The canonical pencils on Horikawa surfaces. Geometry & topology, Tome 10 (2006) no. 4, pp. 2173-2217. doi : 10.2140/gt.2006.10.2173. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2173/
[1] Fiber sums of genus 2 Lefschetz fibrations, Turkish J. Math. 27 (2003) 1
,[2] Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003) 185
, , ,[3] A degree doubling formula for braid monodromies and Lefschetz pencils, preprint
, ,[4] Branched coverings of $\mathbf{C}\mathrm{P}^2$ and invariants of symplectic 4–manifolds, Invent. Math. 142 (2000) 631
, ,[5] Lagrangian submanifolds and Lefschetz pencils, J. Symplectic Geom. 3 (2005) 171
, , ,[6] Lefschetz pencils, branched covers and symplectic invariants, from: "Proc. CIME school, Symplectic 4–manifolds and algebraic surfaces (Cetraro, 2003)", Lecture Notes in Math., Springer
, ,[7] Lefschetz fibrations in symplectic geometry, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 309
,[8] Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205
,[9] Symplectic surfaces in a fixed homology class, J. Differential Geom. 52 (1999) 203
, ,[10] Algebraic surfaces and Seiberg–Witten invariants, J. Algebraic Geom. 6 (1997) 445
, ,[11] Diffeomorphism types of genus 2 Lefschetz fibrations, Math. Ann. 311 (1998) 163
,[12] Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177
,[13] 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, Amer. Math. Soc. (1999)
, ,[14] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[15] On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997) 149
, , ,[16] Algebraic surfaces of general type with small $C^{2}_{1}.$ I, Ann. of Math. $(2)$ 104 (1976) 357
,[17] On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980) 89
,[18] Almost complex structures on $S^2\times S^2$, Duke Math. J. 101 (2000) 135
,[19] $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004)
, ,[20] The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. $(2)$ 141 (1995) 35
, ,[21] Stable branch curves and braid monodromies, from: "Algebraic geometry (Chicago, Ill., 1980)", Lecture Notes in Math. 862, Springer (1981) 107
,[22] More about vanishing cycles and mutation, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)", World Sci. Publ., River Edge, NJ (2001) 429
,[23] On hyperelliptic $C^\infty$–Lefschetz fibrations of four-manifolds, Commun. Contemp. Math. 1 (1999) 255
, ,[24] On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. $(2)$ 161 (2005) 959
, ,[25] The gluing construction for normally generic $J$–holomorphic curves, from: "Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001)", Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 175
,[26] Lefschetz pencils and divisors in moduli space, Geom. Topol. 5 (2001) 579
,Cité par Sources :