The canonical pencils on Horikawa surfaces
Geometry & topology, Tome 10 (2006) no. 4, pp. 2173-2217.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We calculate the monodromies of the canonical Lefschetz pencils on a pair of homeomorphic Horikawa surfaces. We show in particular that the (pluri)canonical pencils on these surfaces have the same monodromy groups, and are related by a “partial twisting” operation.

DOI : 10.2140/gt.2006.10.2173
Keywords: Horikawa surfaces, Lefschetz pencils, monodromy

Auroux, Denis 1

1 Department of Mathematics, MIT, Cambridge, MA 02139, USA
@article{GT_2006_10_4_a3,
     author = {Auroux, Denis},
     title = {The canonical pencils on {Horikawa} surfaces},
     journal = {Geometry & topology},
     pages = {2173--2217},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2006},
     doi = {10.2140/gt.2006.10.2173},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2173/}
}
TY  - JOUR
AU  - Auroux, Denis
TI  - The canonical pencils on Horikawa surfaces
JO  - Geometry & topology
PY  - 2006
SP  - 2173
EP  - 2217
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2173/
DO  - 10.2140/gt.2006.10.2173
ID  - GT_2006_10_4_a3
ER  - 
%0 Journal Article
%A Auroux, Denis
%T The canonical pencils on Horikawa surfaces
%J Geometry & topology
%D 2006
%P 2173-2217
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2173/
%R 10.2140/gt.2006.10.2173
%F GT_2006_10_4_a3
Auroux, Denis. The canonical pencils on Horikawa surfaces. Geometry & topology, Tome 10 (2006) no. 4, pp. 2173-2217. doi : 10.2140/gt.2006.10.2173. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2173/

[1] D Auroux, Fiber sums of genus 2 Lefschetz fibrations, Turkish J. Math. 27 (2003) 1

[2] D Auroux, S K Donaldson, L Katzarkov, Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003) 185

[3] D Auroux, L Katzarkov, A degree doubling formula for braid monodromies and Lefschetz pencils, preprint

[4] D Auroux, L Katzarkov, Branched coverings of $\mathbf{C}\mathrm{P}^2$ and invariants of symplectic 4–manifolds, Invent. Math. 142 (2000) 631

[5] D Auroux, V Muñoz, F Presas, Lagrangian submanifolds and Lefschetz pencils, J. Symplectic Geom. 3 (2005) 171

[6] D Auroux, I Smith, Lefschetz pencils, branched covers and symplectic invariants, from: "Proc. CIME school, Symplectic 4–manifolds and algebraic surfaces (Cetraro, 2003)", Lecture Notes in Math., Springer

[7] S K Donaldson, Lefschetz fibrations in symplectic geometry, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 309

[8] S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205

[9] R Fintushel, R J Stern, Symplectic surfaces in a fixed homology class, J. Differential Geom. 52 (1999) 203

[10] R Friedman, J W Morgan, Algebraic surfaces and Seiberg–Witten invariants, J. Algebraic Geom. 6 (1997) 445

[11] T Fuller, Diffeomorphism types of genus 2 Lefschetz fibrations, Math. Ann. 311 (1998) 163

[12] R E Gompf, Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177

[13] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, Amer. Math. Soc. (1999)

[14] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[15] H Hofer, V Lizan, J C Sikorav, On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997) 149

[16] E Horikawa, Algebraic surfaces of general type with small $C^{2}_{1}.$ I, Ann. of Math. $(2)$ 104 (1976) 357

[17] A Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980) 89

[18] D Mcduff, Almost complex structures on $S^2\times S^2$, Duke Math. J. 101 (2000) 135

[19] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004)

[20] M J Micallef, B White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. $(2)$ 141 (1995) 35

[21] B G Moishezon, Stable branch curves and braid monodromies, from: "Algebraic geometry (Chicago, Ill., 1980)", Lecture Notes in Math. 862, Springer (1981) 107

[22] P Seidel, More about vanishing cycles and mutation, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)", World Sci. Publ., River Edge, NJ (2001) 429

[23] B Siebert, G Tian, On hyperelliptic $C^\infty$–Lefschetz fibrations of four-manifolds, Commun. Contemp. Math. 1 (1999) 255

[24] B Siebert, G Tian, On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. $(2)$ 161 (2005) 959

[25] J C Sikorav, The gluing construction for normally generic $J$–holomorphic curves, from: "Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001)", Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 175

[26] I Smith, Lefschetz pencils and divisors in moduli space, Geom. Topol. 5 (2001) 579

Cité par Sources :