Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using a homotopy approach, we prove in this paper a conjecture of Maulik, Nekrasov, Okounkov and Pandharipande on the dimension zero Donaldson–Thomas invariants of all smooth complex threefolds.
Li, Jun 1
@article{GT_2006_10_4_a2, author = {Li, Jun}, title = {Zero dimensional {Donaldson{\textendash}Thomas} invariants of threefolds}, journal = {Geometry & topology}, pages = {2117--2171}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2006}, doi = {10.2140/gt.2006.10.2117}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2117/} }
Li, Jun. Zero dimensional Donaldson–Thomas invariants of threefolds. Geometry & topology, Tome 10 (2006) no. 4, pp. 2117-2171. doi : 10.2140/gt.2006.10.2117. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.2117/
[1] On the deformation of sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988) 660
,[2] Donaldson-Thomas invariants via microlocal geometry
,[3] Symmetric obstruction theories and Hilbert schemes of points on threefolds
, ,[4] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[5] Gauge theory in higher dimensions, from: "The geometric universe science, geometry, and the work of Roger Penrose (Oxford, 1996)" (editors S S Huggett, e al), Oxford Univ. Press (1998) 31
, ,[6] Algebraic Cobordism revisited
, ,[7] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119
, ,[8] Comparison of algebraic and symplectic Gromov–Witten invariants, Asian J. Math. 3 (1999) 689
, ,[9] Moduli of stable sheaves II, J. Math. Kyoto Univ. 18 (1978) 557
,[10] Gromov-Witten theory and Donaldson-Thomas theory I
, , , ,[11] Gromov-Witten theory and Donaldson-Thomas theory II
, , , ,[12] Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surface, Invent. Math. 77 (1984) 101
,[13] A holomorphic Casson invariant for Calabi–Yau 3–folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000) 367
,Cité par Sources :