Pseudoholomorphic punctured spheres in ℝ × (S1 × S2): Moduli space parametrizations
Geometry & topology, Tome 10 (2006) no. 4, pp. 1855-2054.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the second of two articles that describe the moduli spaces of pseudoholomorphic, multiply punctured spheres in × (S1 × S2) as defined by a certain natural pair of almost complex structure and symplectic form. The first article in this series described the local structure of the moduli spaces and gave existence theorems. This article describes a stratification of the moduli spaces and gives explicit parametrizations for the various strata.

DOI : 10.2140/gt.2006.10.1855
Keywords: pseudoholomorphic, punctured sphere, almost complex structure, symplectic form, moduli space

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{GT_2006_10_4_a0,
     author = {Taubes, Clifford Henry},
     title = {Pseudoholomorphic punctured spheres in {\ensuremath{\mathbb{R}}} {\texttimes} {(S1} {\texttimes} {S2):} {Moduli} space parametrizations},
     journal = {Geometry & topology},
     pages = {1855--2054},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2006},
     doi = {10.2140/gt.2006.10.1855},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1855/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - Pseudoholomorphic punctured spheres in ℝ × (S1 × S2): Moduli space parametrizations
JO  - Geometry & topology
PY  - 2006
SP  - 1855
EP  - 2054
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1855/
DO  - 10.2140/gt.2006.10.1855
ID  - GT_2006_10_4_a0
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T Pseudoholomorphic punctured spheres in ℝ × (S1 × S2): Moduli space parametrizations
%J Geometry & topology
%D 2006
%P 1855-2054
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1855/
%R 10.2140/gt.2006.10.1855
%F GT_2006_10_4_a0
Taubes, Clifford Henry. Pseudoholomorphic punctured spheres in ℝ × (S1 × S2): Moduli space parametrizations. Geometry & topology, Tome 10 (2006) no. 4, pp. 1855-2054. doi : 10.2140/gt.2006.10.1855. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1855/

[1] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[2] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, GAFA 2000 $($Tel Aviv, 1999$)$, Geom. Funct. Anal. (2000) 560

[3] D T Gay, R Kirby, Constructing symplectic forms on 4–manifolds which vanish on circles, Geom. Topol. 8 (2004) 743

[4] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[5] H Hofer, Dynamics, topology, and holomorphic curves, from: "Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998)" (1998) 255

[6] H Hofer, Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35

[7] H Hofer, K Wysocki, E Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270

[8] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337

[9] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis. The Herbert Amman Anniversary", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381

[10] K Honda, An openness theorem for harmonic 2–forms on 4–manifolds, Illinois J. Math. 44 (2000) 479

[11] D Mcduff, The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143

[12] C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 493

[13] C H Taubes, Seiberg–Witten invariants, self-dual harmonic 2–forms and the Hofer–Wysocki–Zehnder formalism, from: "Surveys in differential geometry", Surv. Differ. Geom., VII, Int. Press, Somerville, MA (2000) 625

[14] C H Taubes, A compendium of pseudoholomorphic beasts in $\mathbb R\times (S^1\times S^2)$, Geom. Topol. 6 (2002) 657

[15] C H Taubes, Pseudoholomorphic punctured spheres in $\mathbb R\times (S^ 1\times S^2)$: properties and existence, Geom. Topol. 10 (2006) 785

Cité par Sources :