Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct four-dimensional symplectic cobordisms between contact three-manifolds generalizing an example of Eliashberg. One key feature is that any handlebody decomposition of one of these cobordisms must involve three-handles. The other key feature is that these cobordisms contain chains of symplectically embedded two-spheres of square zero. This, together with standard gauge theory, is used to show that any contact three-manifold of non-zero torsion (in the sense of Giroux) cannot be strongly symplectically fillable. John Etnyre pointed out to the author that the same argument together with compactness results for pseudo-holomorphic curves implies that any contact three-manifold of non-zero torsion satisfies the Weinstein conjecture. We also get examples of weakly symplectically fillable contact three-manifolds which are (strongly) symplectically cobordant to overtwisted contact three-manifolds, shedding new light on the structure of the set of contact three-manifolds equipped with the strong symplectic cobordism partial order.
Gay, David T 1
@article{GT_2006_10_3_a12, author = {Gay, David T}, title = {Four-dimensional symplectic cobordisms containing three-handles}, journal = {Geometry & topology}, pages = {1749--1759}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2006}, doi = {10.2140/gt.2006.10.1749}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1749/} }
TY - JOUR AU - Gay, David T TI - Four-dimensional symplectic cobordisms containing three-handles JO - Geometry & topology PY - 2006 SP - 1749 EP - 1759 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1749/ DO - 10.2140/gt.2006.10.1749 ID - GT_2006_10_3_a12 ER -
Gay, David T. Four-dimensional symplectic cobordisms containing three-handles. Geometry & topology, Tome 10 (2006) no. 3, pp. 1749-1759. doi : 10.2140/gt.2006.10.1749. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1749/
[1] Homologie de contact des variétés toroïdales, Geom. Topol. 9 (2005) 299
, ,[2] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799
, , , , ,[3] Une infinité de structures de contact tendues sur les variétés toroïdales, Comment. Math. Helv. 76 (2001) 353
,[4] Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1 (2001) 153
, ,[5] Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623
,[6] Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", LMS Lecture Notes 151, Cambridge Univ. Press (1990) 45
,[7] Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29
,[8] Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77
,[9] A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277
,[10] On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73
,[11] On symplectic cobordisms, Math. Ann. 323 (2002) 31
, ,[12] Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002) 431
,[13] Contact geometry, from: "Handbook of differential geometry. Vol. II", Elsevier/North-Holland, Amsterdam (2006) 315
,[14] Ozsváth–Szabó invariants and fillability of contact structures, Math. Z. 253 (2006) 159
,[15] Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 697
,[16] Une infinité de structures de contact tendues sur une infinité de variétés, Invent. Math. 135 (1999) 789
,[17] Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615
,[18] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[19] Symplectic fillability and Giroux torsion
, ,[20] The structure of rational and ruled symplectic 4–manifolds, J. Amer. Math. Soc. 3 (1990) 679
,[21] Simple singularities and topology of symplectically filling 4–manifold, Comment. Math. Helv. 74 (1999) 575
, ,[22] On the geography of Stein fillings of certain 3–manifolds, Michigan Math. J. 51 (2003) 327
,[23] Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153
,[24] The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809
,[25] Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241
,Cité par Sources :