Four-dimensional symplectic cobordisms containing three-handles
Geometry & topology, Tome 10 (2006) no. 3, pp. 1749-1759.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct four-dimensional symplectic cobordisms between contact three-manifolds generalizing an example of Eliashberg. One key feature is that any handlebody decomposition of one of these cobordisms must involve three-handles. The other key feature is that these cobordisms contain chains of symplectically embedded two-spheres of square zero. This, together with standard gauge theory, is used to show that any contact three-manifold of non-zero torsion (in the sense of Giroux) cannot be strongly symplectically fillable. John Etnyre pointed out to the author that the same argument together with compactness results for pseudo-holomorphic curves implies that any contact three-manifold of non-zero torsion satisfies the Weinstein conjecture. We also get examples of weakly symplectically fillable contact three-manifolds which are (strongly) symplectically cobordant to overtwisted contact three-manifolds, shedding new light on the structure of the set of contact three-manifolds equipped with the strong symplectic cobordism partial order.

DOI : 10.2140/gt.2006.10.1749
Keywords: symplectic cobordism, contact structure, 3-manifold, 4-manifold, 3-handle, fillable, Weinstein conjecture, overtwisted, torsion, toroidal manifold, moment map, toric fibration

Gay, David T 1

1 Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
@article{GT_2006_10_3_a12,
     author = {Gay, David T},
     title = {Four-dimensional symplectic cobordisms containing three-handles},
     journal = {Geometry & topology},
     pages = {1749--1759},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1749},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1749/}
}
TY  - JOUR
AU  - Gay, David T
TI  - Four-dimensional symplectic cobordisms containing three-handles
JO  - Geometry & topology
PY  - 2006
SP  - 1749
EP  - 1759
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1749/
DO  - 10.2140/gt.2006.10.1749
ID  - GT_2006_10_3_a12
ER  - 
%0 Journal Article
%A Gay, David T
%T Four-dimensional symplectic cobordisms containing three-handles
%J Geometry & topology
%D 2006
%P 1749-1759
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1749/
%R 10.2140/gt.2006.10.1749
%F GT_2006_10_3_a12
Gay, David T. Four-dimensional symplectic cobordisms containing three-handles. Geometry & topology, Tome 10 (2006) no. 3, pp. 1749-1759. doi : 10.2140/gt.2006.10.1749. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1749/

[1] F Bourgeois, V Colin, Homologie de contact des variétés toroïdales, Geom. Topol. 9 (2005) 299

[2] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[3] V Colin, Une infinité de structures de contact tendues sur les variétés toroïdales, Comment. Math. Helv. 76 (2001) 353

[4] F Ding, H Geiges, Symplectic fillability of tight contact structures on torus bundles, Algebr. Geom. Topol. 1 (2001) 153

[5] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623

[6] Y Eliashberg, Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", LMS Lecture Notes 151, Cambridge Univ. Press (1990) 45

[7] Y Eliashberg, Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29

[8] Y Eliashberg, Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77

[9] Y Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277

[10] J B Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004) 73

[11] J B Etnyre, K Honda, On symplectic cobordisms, Math. Ann. 323 (2002) 31

[12] D T Gay, Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002) 431

[13] H Geiges, Contact geometry, from: "Handbook of differential geometry. Vol. II", Elsevier/North-Holland, Amsterdam (2006) 315

[14] P Ghiggini, Ozsváth–Szabó invariants and fillability of contact structures, Math. Z. 253 (2006) 159

[15] E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 697

[16] E Giroux, Une infinité de structures de contact tendues sur une infinité de variétés, Invent. Math. 135 (1999) 789

[17] E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615

[18] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[19] P Lisca, A Stipsicz, Symplectic fillability and Giroux torsion

[20] D Mcduff, The structure of rational and ruled symplectic 4–manifolds, J. Amer. Math. Soc. 3 (1990) 679

[21] H Ohta, K Ono, Simple singularities and topology of symplectically filling 4–manifold, Comment. Math. Helv. 74 (1999) 575

[22] A I Stipsicz, On the geography of Stein fillings of certain 3–manifolds, Michigan Math. J. 51 (2003) 327

[23] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153

[24] C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809

[25] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241

Cité par Sources :