Geometry of contact transformations and domains: orderability versus squeezing
Geometry & topology, Tome 10 (2006) no. 3, pp. 1635-1747.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Gromov’s famous non-squeezing theorem (1985) states that the standard symplectic ball cannot be symplectically squeezed into any cylinder of smaller radius. Does there exist an analogue of this result in contact geometry? Our main finding is that the answer depends on the sizes of the domains in question: We establish contact non-squeezing on large scales, and show that it disappears on small scales. The algebraic counterpart of the (non)-squeezing problem for contact domains is the question of existence of a natural partial order on the universal cover of the contactomorphisms group of a contact manifold. In contrast to our earlier beliefs, we show that the answer to this question is very sensitive to the topology of the manifold. For instance, we prove that the standard contact sphere is non-orderable while the real projective space is known to be orderable. Our methods include a new embedding technique in contact geometry as well as a generalized Floer homology theory which contains both cylindrical contact homology and Hamiltonian Floer homology. We discuss links to a number of miscellaneous topics such as topology of free loops spaces, quantum mechanics and semigroups.

DOI : 10.2140/gt.2006.10.1635
Keywords: contact manifolds, contact squeezing and orderability, Floer homology, holomorphic curves

Eliashberg, Yakov 1 ; Kim, Sang Seon 2 ; Polterovich, Leonid 3

1 Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA
2 Departamento de Matemática, Instituto Superior Técnico, Av Roviso Pais, 1049-001 Lisboa, Portugal
3 School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
@article{GT_2006_10_3_a11,
     author = {Eliashberg, Yakov and Kim, Sang Seon and Polterovich, Leonid},
     title = {Geometry of contact transformations and domains: orderability versus squeezing},
     journal = {Geometry & topology},
     pages = {1635--1747},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1635},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1635/}
}
TY  - JOUR
AU  - Eliashberg, Yakov
AU  - Kim, Sang Seon
AU  - Polterovich, Leonid
TI  - Geometry of contact transformations and domains: orderability versus squeezing
JO  - Geometry & topology
PY  - 2006
SP  - 1635
EP  - 1747
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1635/
DO  - 10.2140/gt.2006.10.1635
ID  - GT_2006_10_3_a11
ER  - 
%0 Journal Article
%A Eliashberg, Yakov
%A Kim, Sang Seon
%A Polterovich, Leonid
%T Geometry of contact transformations and domains: orderability versus squeezing
%J Geometry & topology
%D 2006
%P 1635-1747
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1635/
%R 10.2140/gt.2006.10.1635
%F GT_2006_10_3_a11
Eliashberg, Yakov; Kim, Sang Seon; Polterovich, Leonid. Geometry of contact transformations and domains: orderability versus squeezing. Geometry & topology, Tome 10 (2006) no. 3, pp. 1635-1747. doi : 10.2140/gt.2006.10.1635. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1635/

[1] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254

[2] G Baumslag, A G Myasnikov, V Shpilrain, Open problems in combinatorial group theory. Second edition, from: "Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001)", Contemp. Math. 296, Amer. Math. Soc. (2002) 1

[3] P Biran, L Polterovich, D Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J. 119 (2003) 65

[4] F Bourgeois, A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001)" (editors Y Elashberg, B Khesin, F Lalonde), Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55

[5] F Bourgeois, Contact homology and homotopy groups of the space of contact structures, Math. Res. Lett. 13 (2006) 71

[6] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[7] E M Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series) 46, Kluwer Academic Publishers Group (1989)

[8] K Cieliebak, Subcritical manifolds are split

[9] K Cieliebak, A Floer, H Hofer, Symplectic homology II: A general construction, Math. Z. 218 (1995) 103

[10] K Cieliebak, V L Ginzburg, E Kerman, Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv. 79 (2004) 554

[11] K Cieliebak, H Hofer, J Latschev, F Schlenk, Quantitative symplectic geometry

[12] M De Gosson, The symplectic camel and phase space quantization, J. Phys. A 34 (2001) 10085

[13] M De Gosson, Phase space quantization and the uncertainty principle, Phys. Lett. A 317 (2003) 365

[14] D L Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math. 57 (2004) 726

[15] Y Eliashberg, Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29

[16] Y Eliashberg, New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc. 4 (1991) 513

[17] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, GAFA 2000 $($Tel Aviv, 1999$)$, Geom. Funct. Anal. (2000) 560

[18] Y Eliashberg, M Gromov, Convex symplectic manifolds, from: "Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989)", Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 135

[19] Y Eliashberg, L Polterovich, Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal. 10 (2000) 1448

[20] Y Félix, J C Thomas, M Vigué-Poirrier, Free loop spaces of finite complexes have infinite category, Proc. Amer. Math. Soc. 111 (1991) 869

[21] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575

[22] A Floer, H Hofer, Symplectic homology I: Open sets in $\mathbf{C}^n$, Math. Z. 215 (1994) 37

[23] A Floer, H Hofer, K Wysocki, Applications of symplectic homology I, Math. Z. 217 (1994) 577

[24] H Geiges, Contact geometry, from: "Handbook of differential geometry. Vol. II", Elsevier/North-Holland, Amsterdam (2006) 315

[25] V L Ginzburg, B Z Gürel, Relative Hofer–Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J. 123 (2004) 1

[26] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637

[27] A Givental, Nonlinear generalization of the Maslov index, from: "Theory of singularities and its applications", Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 71

[28] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[29] J Hilgert, K H Neeb, Lie semigroups and their applications, Lecture Notes in Mathematics 1552, Springer (1993)

[30] J Hilgert, G Ólafsson, Causal symmetric spaces, Geometry and harmonic analysis, Perspectives in Mathematics 18, Academic Press (1997)

[31] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381

[32] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts, Birkhäuser (1994)

[33] S Jackowski, J Słomińska, $G$–functors, $G$–posets and homotopy decompositions of $G$–spaces, Fund. Math. 169 (2001) 249

[34] F Lalonde, D Mcduff, The geometry of symplectic energy, Ann. of Math. $(2)$ 141 (1995) 349

[35] F Lalonde, D Mcduff, Hofer's $L^\infty$–geometry: energy and stability of Hamiltonian flows I, II, Invent. Math. 122 (1995) 1, 35

[36] J A Makowsky, On some conjectures connected with complete sentences, from: "Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, III", Fund. Math. 81 (1974) 193

[37] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004)

[38] M J Micallef, B White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. $(2)$ 141 (1995) 35

[39] G I Olshanskii, Invariant orderings in simple Lie groups. Solution of a problem of E. B Vinberg, Funktsional. Anal. i Prilozhen. 16 (1982)

[40] J Palis Jr., W De Melo, Geometric theory of dynamical systems, Springer (1982)

[41] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827

[42] W Rudin, Function theory in the unit ball of $\mathbf{C}^{n}$, Grundlehren series 241, Springer (1980)

[43] D Salamon, J Weber, Floer homology and the heat flow, Geom. Funct. Anal. $($GAFA$)$. to appear

[44] I Ustilovsky, Infinitely many contact structures on $S^{4m+1}$, Internat. Math. Res. Notices (1999) 781

[45] C Viterbo, Functors and computations in Floer homology with applications, Part II

[46] C Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc. 13 (2000) 411

[47] J Weber, Noncontractible periodic orbits in cotangent bundles and Floer homology, Duke Math. J. 133 (2006) 527

[48] M L Yau, Cylindrical contact homology of subcritical Stein-fillable contact manifolds, Geom. Topol. 8 (2004) 1243

Cité par Sources :