Connectivity properties of moment maps on based loop groups
Geometry & topology, Tome 10 (2006) no. 3, pp. 1607-1634.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For a compact, connected, simply-connected Lie group G, the loop group LG is the infinite-dimensional Hilbert Lie group consisting of H1–Sobolev maps S1 G. The geometry of LG and its homogeneous spaces is related to representation theory and has been extensively studied. The space of based loops Ω(G) is an example of a homogeneous space of LG and has a natural Hamiltonian T × S1 action, where T is the maximal torus of G. We study the moment map μ for this action, and in particular prove that its regular level sets are connected. This result is as an infinite-dimensional analogue of a theorem of Atiyah that states that the preimage of a moment map for a Hamiltonian torus action on a compact symplectic manifold is connected. In the finite-dimensional case, this connectivity result is used to prove that the image of the moment map for a compact Hamiltonian T–space is convex. Thus our theorem can also be viewed as a companion result to a theorem of Atiyah and Pressley, which states that the image μ(Ω(G)) is convex. We also show that for the energy functional E, which is the moment map for the S1 rotation action, each non-empty preimage is connected.

DOI : 10.2140/gt.2006.10.1607
Keywords: loop group, moment map, connectivity property

Harada, Megumi 1 ; Holm, Tara S 2 ; Jeffrey, Lisa C 3 ; Mare, Augustin-Liviu 4

1 Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
2 Department of Mathematics, 589 Malott Hall, Cornell University, Ithaca, NY 14850-4201, USA
3 Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
4 Department of Mathematics and Statistics, University of Regina, College West 307.14, Regina, Saskatchewan S4S 0A2, Canada
@article{GT_2006_10_3_a10,
     author = {Harada, Megumi and Holm, Tara S and Jeffrey, Lisa C and Mare, Augustin-Liviu},
     title = {Connectivity properties of moment maps on based loop groups},
     journal = {Geometry & topology},
     pages = {1607--1634},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1607},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1607/}
}
TY  - JOUR
AU  - Harada, Megumi
AU  - Holm, Tara S
AU  - Jeffrey, Lisa C
AU  - Mare, Augustin-Liviu
TI  - Connectivity properties of moment maps on based loop groups
JO  - Geometry & topology
PY  - 2006
SP  - 1607
EP  - 1634
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1607/
DO  - 10.2140/gt.2006.10.1607
ID  - GT_2006_10_3_a10
ER  - 
%0 Journal Article
%A Harada, Megumi
%A Holm, Tara S
%A Jeffrey, Lisa C
%A Mare, Augustin-Liviu
%T Connectivity properties of moment maps on based loop groups
%J Geometry & topology
%D 2006
%P 1607-1634
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1607/
%R 10.2140/gt.2006.10.1607
%F GT_2006_10_3_a10
Harada, Megumi; Holm, Tara S; Jeffrey, Lisa C; Mare, Augustin-Liviu. Connectivity properties of moment maps on based loop groups. Geometry & topology, Tome 10 (2006) no. 3, pp. 1607-1634. doi : 10.2140/gt.2006.10.1607. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1607/

[1] M F Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982) 1

[2] M F Atiyah, A N Pressley, Convexity and loop groups, from: "Arithmetic and geometry, Vol. II", Progr. Math. 36, Birkhäuser (1983) 33

[3] T Bröcker, T Tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics 98, Springer (1985)

[4] I Dolgachev, Lectures on invariant theory, London Mathematical Society Lecture Note Series 296, Cambridge University Press (2003)

[5] D S Freed, The geometry of loop groups, J. Differential Geom. 28 (1988) 223

[6] M A Guest, A N Pressley, Holomorphic curves in loop groups, Comm. Math. Phys. 118 (1988) 511

[7] V Guillemin, S Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982) 491

[8] V Guillemin, S Sternberg, Multiplicity-free spaces, J. Differential Geom. 19 (1984) 31

[9] M Harada, A Henriques, T S Holm, Computation of generalized equivariant cohomologies of Kac–Moody flag varieties, Adv. Math. 197 (2005) 198

[10] P Heinzner, L Migliorini, Projectivity of moment map quotients, Osaka J. Math. 38 (2001) 167

[11] L C Jeffrey, F C Kirwan, Localization for nonabelian group actions, Topology 34 (1995) 291

[12] Y Karshon, E Lerman, The centralizer of invariant functions and division properties of the moment map, Illinois J. Math. 41 (1997) 462

[13] F C Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31, Princeton University Press (1984)

[14] F Kirwan, Rational intersection cohomology of quotient varieties II, Invent. Math. 90 (1987) 153

[15] R R Kocherlakota, Integral homology of real flag manifolds and loop spaces of symmetric spaces, Adv. Math. 110 (1995) 1

[16] S Kumar, Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics 204, Birkhäuser (2002)

[17] S Lang, Differential manifolds, Addison-Wesley Publishing Co.,, Reading, MA-London-Don Mills, Ont. (1972)

[18] E Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995) 247

[19] W Liu, Convexity of moment polytopes of algebraic varieties, Proc. Amer. Math. Soc. 131 (2003) 2921

[20] A L Mare, Connectivity and Kirwan surjectivity for isoparametric submanifolds, Int. Math. Res. Not. (2005) 3427

[21] S A Mitchell, A filtration of the loops on $\mathrm{SU}(n)$ by Schubert varieties, Math. Z. 193 (1986) 347

[22] D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, Ergebnisse series 34, Springer (1994)

[23] R S Palais, Morse theory on Hilbert manifolds, Topology 2 (1963) 299

[24] R S Palais, C L Terng, Critical point theory and submanifold geometry, Lecture Notes in Mathematics 1353, Springer (1988)

[25] A N Pressley, The energy flow on the loop space of a compact Lie group, J. London Math. Soc. $(2)$ 26 (1982) 557

[26] A N Pressley, G B Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1986)

[27] C L Terng, Proper Fredholm submanifolds of Hilbert space, J. Differential Geom. 29 (1989) 9

[28] C L Terng, Convexity theorem for infinite-dimensional isoparametric submanifolds, Invent. Math. 112 (1993) 9

[29] S Tolman, J Weitsman, The cohomology rings of symplectic quotients, Comm. Anal. Geom. 11 (2003) 751

[30] C T Woodward, The Yang–Mills heat flow on the moduli space of framed bundles on a surface, Amer. J. Math. 128 (2006) 311

Cité par Sources :