Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For a compact, connected, simply-connected Lie group , the loop group is the infinite-dimensional Hilbert Lie group consisting of –Sobolev maps The geometry of and its homogeneous spaces is related to representation theory and has been extensively studied. The space of based loops is an example of a homogeneous space of and has a natural Hamiltonian action, where is the maximal torus of . We study the moment map for this action, and in particular prove that its regular level sets are connected. This result is as an infinite-dimensional analogue of a theorem of Atiyah that states that the preimage of a moment map for a Hamiltonian torus action on a compact symplectic manifold is connected. In the finite-dimensional case, this connectivity result is used to prove that the image of the moment map for a compact Hamiltonian –space is convex. Thus our theorem can also be viewed as a companion result to a theorem of Atiyah and Pressley, which states that the image is convex. We also show that for the energy functional , which is the moment map for the rotation action, each non-empty preimage is connected.
Harada, Megumi 1 ; Holm, Tara S 2 ; Jeffrey, Lisa C 3 ; Mare, Augustin-Liviu 4
@article{GT_2006_10_3_a10, author = {Harada, Megumi and Holm, Tara S and Jeffrey, Lisa C and Mare, Augustin-Liviu}, title = {Connectivity properties of moment maps on based loop groups}, journal = {Geometry & topology}, pages = {1607--1634}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2006}, doi = {10.2140/gt.2006.10.1607}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1607/} }
TY - JOUR AU - Harada, Megumi AU - Holm, Tara S AU - Jeffrey, Lisa C AU - Mare, Augustin-Liviu TI - Connectivity properties of moment maps on based loop groups JO - Geometry & topology PY - 2006 SP - 1607 EP - 1634 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1607/ DO - 10.2140/gt.2006.10.1607 ID - GT_2006_10_3_a10 ER -
%0 Journal Article %A Harada, Megumi %A Holm, Tara S %A Jeffrey, Lisa C %A Mare, Augustin-Liviu %T Connectivity properties of moment maps on based loop groups %J Geometry & topology %D 2006 %P 1607-1634 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1607/ %R 10.2140/gt.2006.10.1607 %F GT_2006_10_3_a10
Harada, Megumi; Holm, Tara S; Jeffrey, Lisa C; Mare, Augustin-Liviu. Connectivity properties of moment maps on based loop groups. Geometry & topology, Tome 10 (2006) no. 3, pp. 1607-1634. doi : 10.2140/gt.2006.10.1607. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1607/
[1] Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982) 1
,[2] Convexity and loop groups, from: "Arithmetic and geometry, Vol. II", Progr. Math. 36, Birkhäuser (1983) 33
, ,[3] Representations of compact Lie groups, Graduate Texts in Mathematics 98, Springer (1985)
, ,[4] Lectures on invariant theory, London Mathematical Society Lecture Note Series 296, Cambridge University Press (2003)
,[5] The geometry of loop groups, J. Differential Geom. 28 (1988) 223
,[6] Holomorphic curves in loop groups, Comm. Math. Phys. 118 (1988) 511
, ,[7] Convexity properties of the moment mapping, Invent. Math. 67 (1982) 491
, ,[8] Multiplicity-free spaces, J. Differential Geom. 19 (1984) 31
, ,[9] Computation of generalized equivariant cohomologies of Kac–Moody flag varieties, Adv. Math. 197 (2005) 198
, , ,[10] Projectivity of moment map quotients, Osaka J. Math. 38 (2001) 167
, ,[11] Localization for nonabelian group actions, Topology 34 (1995) 291
, ,[12] The centralizer of invariant functions and division properties of the moment map, Illinois J. Math. 41 (1997) 462
, ,[13] Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31, Princeton University Press (1984)
,[14] Rational intersection cohomology of quotient varieties II, Invent. Math. 90 (1987) 153
,[15] Integral homology of real flag manifolds and loop spaces of symmetric spaces, Adv. Math. 110 (1995) 1
,[16] Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics 204, Birkhäuser (2002)
,[17] Differential manifolds, Addison-Wesley Publishing Co.,, Reading, MA-London-Don Mills, Ont. (1972)
,[18] Symplectic cuts, Math. Res. Lett. 2 (1995) 247
,[19] Convexity of moment polytopes of algebraic varieties, Proc. Amer. Math. Soc. 131 (2003) 2921
,[20] Connectivity and Kirwan surjectivity for isoparametric submanifolds, Int. Math. Res. Not. (2005) 3427
,[21] A filtration of the loops on $\mathrm{SU}(n)$ by Schubert varieties, Math. Z. 193 (1986) 347
,[22] Geometric invariant theory, Ergebnisse series 34, Springer (1994)
, , ,[23] Morse theory on Hilbert manifolds, Topology 2 (1963) 299
,[24] Critical point theory and submanifold geometry, Lecture Notes in Mathematics 1353, Springer (1988)
, ,[25] The energy flow on the loop space of a compact Lie group, J. London Math. Soc. $(2)$ 26 (1982) 557
,[26] Loop groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1986)
, ,[27] Proper Fredholm submanifolds of Hilbert space, J. Differential Geom. 29 (1989) 9
,[28] Convexity theorem for infinite-dimensional isoparametric submanifolds, Invent. Math. 112 (1993) 9
,[29] The cohomology rings of symplectic quotients, Comm. Anal. Geom. 11 (2003) 751
, ,[30] The Yang–Mills heat flow on the moduli space of framed bundles on a surface, Amer. J. Math. 128 (2006) 311
,Cité par Sources :