Rational maps and string topology
Geometry & topology, Tome 10 (2006) no. 3, pp. 1579-1606.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We apply a version of the Chas–Sullivan–Cohen–Jones product on the higher loop homology of a manifold in order to compute the homology of the spaces of continuous and holomorphic maps of the Riemann sphere into a complex projective space. This product makes sense on the homology of maps from a co–H space to a manifold, and comes from a ring spectrum. We also build a holomorphic version of the product for maps of the Riemann sphere into homogeneous spaces. In the continuous case we define a related module structure on the homology of maps from a mapping cone into a manifold, and then describe a spectral sequence that can compute it. As a consequence we deduce a periodicity and dichotomy theorem when the source is a compact Riemann surface and the target is a complex projective space.

DOI : 10.2140/gt.2006.10.1579
Keywords: mapping space, rational map, string product

Kallel, Sadok 1 ; Salvatore, Paolo 2

1 Laboratoire Painlevé, Université de Lille I, Villeneuve d’Ascq, France
2 Dipartimento di matematica, Università di Roma “Tor Vergata”, Roma, Italy
@article{GT_2006_10_3_a9,
     author = {Kallel, Sadok and Salvatore, Paolo},
     title = {Rational maps and string topology},
     journal = {Geometry & topology},
     pages = {1579--1606},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1579},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1579/}
}
TY  - JOUR
AU  - Kallel, Sadok
AU  - Salvatore, Paolo
TI  - Rational maps and string topology
JO  - Geometry & topology
PY  - 2006
SP  - 1579
EP  - 1606
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1579/
DO  - 10.2140/gt.2006.10.1579
ID  - GT_2006_10_3_a9
ER  - 
%0 Journal Article
%A Kallel, Sadok
%A Salvatore, Paolo
%T Rational maps and string topology
%J Geometry & topology
%D 2006
%P 1579-1606
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1579/
%R 10.2140/gt.2006.10.1579
%F GT_2006_10_3_a9
Kallel, Sadok; Salvatore, Paolo. Rational maps and string topology. Geometry & topology, Tome 10 (2006) no. 3, pp. 1579-1606. doi : 10.2140/gt.2006.10.1579. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1579/

[1] C P Boyer, B M Mann, J C Hurtubise, R J Milgram, The topology of the space of rational maps into generalized flag manifolds, Acta Math. 173 (1994) 61

[2] M Chas, D Sullivan, String topology

[3] D Chataur, A bordism approach to string topology, Int. Math. Res. Not. (2005) 2829

[4] F R Cohen, R L Cohen, B M Mann, R J Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991) 163

[5] R L Cohen, Multiplicative properties of Atiyah duality, Homology Homotopy Appl. 6 (2004) 269

[6] R L Cohen, V Godin, A polarized view of string topology, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 127

[7] R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773

[8] R L Cohen, J D S Jones, J Yan, The loop homology algebra of spheres and projective spaces, from: "Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001)", Progr. Math. 215, Birkhäuser (2004) 77

[9] Y Félix, L Menichi, J C Thomas, Gerstenhaber duality in Hochschild cohomology, J. Pure Appl. Algebra 199 (2005) 43

[10] J Gravesen, On the topology of spaces of holomorphic maps, Acta Math. 162 (1989) 247

[11] K Gruher, P Salvatore, String topology in a general fiberwise setting and applications

[12] J W Havlicek, The cohomology of holomorphic self-maps of the Riemann sphere, Math. Z. 218 (1995) 179

[13] P Hu, Higher string topology on general spaces

[14] J C Hurtubise, Configurations de particules et espaces de modules, Canad. Math. Bull. 38 (1995) 66

[15] S Kallel, Configuration spaces and the topology of curves in projective space, from: "Topology, geometry, and algebra: interactions and new directions (Stanford, CA, 1999)", Contemp. Math. 279, Amer. Math. Soc. (2001) 151

[16] S Kallel, P Salvatore, work in progress

[17] J R Klein, Fiber products, Poincaré duality and $A_\infty$–ring spectra, Proc. Amer. Math. Soc. 134 (2006) 1825

[18] A W Knapp, Lie groups beyond an introduction, Progress in Mathematics 140, Birkhäuser (1996)

[19] J Leborgne, String Spectral Sequences

[20] G Segal, The topology of spaces of rational functions, Acta Math. 143 (1979) 39

[21] R M Switzer, Algebraic topology—homotopy and homology, Classics in Mathematics, Springer (2002)

Cité par Sources :