Stabilization in the braid groups II: Transversal simplicity of knots
Geometry & topology, Tome 10 (2006) no. 3, pp. 1425-1452.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The main result of this paper is a negative answer to the question: are all transversal knot types transversally simple? An explicit infinite family of examples is given of closed 3–braids that define transversal knot types that are not transversally simple. The method of proof is topological and indirect.

DOI : 10.2140/gt.2006.10.1425
Keywords: contact structures, tight, transversal knot type, 3-braids, flypes, Bennequin invariant, transversally simple

Birman, Joan S 1 ; Menasco, William W 2

1 Department of Mathematics, Barnard College, Columbia University, 2990 Broadway, New York, NY 10027, USA
2 Department of Mathematics, University at Buffalo, Buffalo, NY 14260, USA
@article{GT_2006_10_3_a6,
     author = {Birman, Joan S and Menasco, William W},
     title = {Stabilization in the braid groups {II:} {Transversal} simplicity of knots},
     journal = {Geometry & topology},
     pages = {1425--1452},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1425},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1425/}
}
TY  - JOUR
AU  - Birman, Joan S
AU  - Menasco, William W
TI  - Stabilization in the braid groups II: Transversal simplicity of knots
JO  - Geometry & topology
PY  - 2006
SP  - 1425
EP  - 1452
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1425/
DO  - 10.2140/gt.2006.10.1425
ID  - GT_2006_10_3_a6
ER  - 
%0 Journal Article
%A Birman, Joan S
%A Menasco, William W
%T Stabilization in the braid groups II: Transversal simplicity of knots
%J Geometry & topology
%D 2006
%P 1425-1452
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1425/
%R 10.2140/gt.2006.10.1425
%F GT_2006_10_3_a6
Birman, Joan S; Menasco, William W. Stabilization in the braid groups II: Transversal simplicity of knots. Geometry & topology, Tome 10 (2006) no. 3, pp. 1425-1452. doi : 10.2140/gt.2006.10.1425. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1425/

[1] V I Arnol’D, Topological invariants of plane curves and caustics, University Lecture Series 5, American Mathematical Society (1994)

[2] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[3] J S Birman, E Finkelstein, Studying surfaces via closed braids, J. Knot Theory Ramifications 7 (1998) 267

[4] J S Birman, W W Menasco, Studying links via closed braids III: Classifying links which are closed 3–braids, Pacific J. Math. 161 (1993) 25

[5] J S Birman, W W Menasco, On Markov's theorem, J. Knot Theory Ramifications 11 (2002) 295

[6] J S Birman, W W Menasco, Stabilization in the braid groups I: MTWS, Geom. Topol. 10 (2006) 413

[7] J S Birman, N C Wrinkle, On transversally simple knots, J. Differential Geom. 55 (2000) 325

[8] Y Eliashberg, Legendrian and transversal knots in tight contact 3–manifolds, from: "Topological methods in modern mathematics (Stony Brook, NY, 1991)", Publish or Perish (1993) 171

[9] J B Etnyre, K Honda, Cabling and transverse simplicity, Ann. of Math. $(2)$ 162 (2005) 1305

[10] D Fuchs, S Tabachnikov, Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997) 1025

[11] E Giroux, Géométrie de Contact:de la Dimension Trois vers les Dimensions Supérieures

[12] K H Ko, S J Lee, Flypes of closed 3–braids in the standard contact space, J. Korean Math. Soc. 36 (1999) 51

[13] H R Morton, Infinitely many fibred knots having the same Alexander polynomial, Topology 17 (1978) 101

[14] K Murasugi, On closed 3–braids, American Mathematical Society (1974)

[15] S Y Orevkov, V V Shevchishin, Markov theorem for transversal links, J. Knot Theory Ramifications 12 (2003) 905

[16] N Wrinkle, PhD thesis, Columbia University (2002)

Cité par Sources :