Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a compact oriented PL manifold and let be its PL chain complex. The domain of the chain-level intersection pairing is a subcomplex of . We prove that the inclusion map from this subcomplex to is a quasi-isomorphism. An analogous result is true for the domain of the iterated intersection pairing. Using this, we show that the intersection pairing gives a structure of partially defined commutative DGA, which in particular implies that is canonically quasi-isomorphic to an chain algebra.
McClure, J E 1
@article{GT_2006_10_3_a5, author = {McClure, J E}, title = {On the chain-level intersection pairing for {PL} manifolds}, journal = {Geometry & topology}, pages = {1391--1424}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2006}, doi = {10.2140/gt.2006.10.1391}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1391/} }
McClure, J E. On the chain-level intersection pairing for PL manifolds. Geometry & topology, Tome 10 (2006) no. 3, pp. 1391-1424. doi : 10.2140/gt.2006.10.1391. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1391/
[1] Piecewise linear topology, from: "Handbook of geometric topology", North-Holland (2002) 219
,[2] String Topology
, ,[3] Lectures on algebraic topology, Springer (1972)
,[4] Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265
,[5] Intersection homology theory, Topology 19 (1980) 135
, ,[6] Über eine Definition von S. Lefschetz in der topologischen Schnittheorie, S.-B. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 108 (1969)
,[7] Operads, algebras, modules and motives, Astérisque (1995)
, ,[8] Intersections and transformations of complexes and manifolds, Trans. Amer. Math. Soc. 28 (1926) 1
,[9] Topology, American Mathematical Society Colloquium Publications, v. 27, American Mathematical Society (1930)
,[10] Homotopy algebras for operads
,[11] Operads in algebra, topology and physics, Mathematical Surveys and Monographs 96, American Mathematical Society (2002)
, , ,[12] The uniqueness of infinite loop space machines, Topology 17 (1978) 205
, ,[13] String topology and the cobar construction, in preparation
,[14] Categories and cohomology theories, Topology 13 (1974) 293
,[15] Algebraic topology, McGraw-Hill Book Co. (1966)
,[16] The work and influence of Professor S. Lefschetz in algebraic topology, from: "Algebraic geometry and topology. A symposium in honor of S. Lefschetz", Princeton University Press (1957) 24
,[17] Partial Algebras Over Operads of Complexes and Applications
,Cité par Sources :