On the chain-level intersection pairing for PL manifolds
Geometry & topology, Tome 10 (2006) no. 3, pp. 1391-1424.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a compact oriented PL manifold and let CM be its PL chain complex. The domain of the chain-level intersection pairing is a subcomplex of CM CM. We prove that the inclusion map from this subcomplex to CM CM is a quasi-isomorphism. An analogous result is true for the domain of the iterated intersection pairing. Using this, we show that the intersection pairing gives CM a structure of partially defined commutative DGA, which in particular implies that CM is canonically quasi-isomorphic to an E chain algebra.

DOI : 10.2140/gt.2006.10.1391
Keywords: intersection pairing, partial algebra, general position

McClure, J E 1

1 Department of Mathematics, Purdue University, 150 N University Street, West Lafayette, IN 47907-2067, USA
@article{GT_2006_10_3_a5,
     author = {McClure, J E},
     title = {On the chain-level intersection pairing for {PL} manifolds},
     journal = {Geometry & topology},
     pages = {1391--1424},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1391},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1391/}
}
TY  - JOUR
AU  - McClure, J E
TI  - On the chain-level intersection pairing for PL manifolds
JO  - Geometry & topology
PY  - 2006
SP  - 1391
EP  - 1424
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1391/
DO  - 10.2140/gt.2006.10.1391
ID  - GT_2006_10_3_a5
ER  - 
%0 Journal Article
%A McClure, J E
%T On the chain-level intersection pairing for PL manifolds
%J Geometry & topology
%D 2006
%P 1391-1424
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1391/
%R 10.2140/gt.2006.10.1391
%F GT_2006_10_3_a5
McClure, J E. On the chain-level intersection pairing for PL manifolds. Geometry & topology, Tome 10 (2006) no. 3, pp. 1391-1424. doi : 10.2140/gt.2006.10.1391. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1391/

[1] J L Bryant, Piecewise linear topology, from: "Handbook of geometric topology", North-Holland (2002) 219

[2] M Chas, D Sullivan, String Topology

[3] A Dold, Lectures on algebraic topology, Springer (1972)

[4] E Getzler, Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265

[5] M Goresky, R Macpherson, Intersection homology theory, Topology 19 (1980) 135

[6] O H Keller, Über eine Definition von S. Lefschetz in der topologischen Schnittheorie, S.-B. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 108 (1969)

[7] I Kríž, J P May, Operads, algebras, modules and motives, Astérisque (1995)

[8] S Lefschetz, Intersections and transformations of complexes and manifolds, Trans. Amer. Math. Soc. 28 (1926) 1

[9] S Lefschetz, Topology, American Mathematical Society Colloquium Publications, v. 27, American Mathematical Society (1930)

[10] T Leinster, Homotopy algebras for operads

[11] M Markl, S Shnider, J Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs 96, American Mathematical Society (2002)

[12] J P May, R Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978) 205

[13] J E Mcclure, String topology and the cobar construction, in preparation

[14] G Segal, Categories and cohomology theories, Topology 13 (1974) 293

[15] E H Spanier, Algebraic topology, McGraw-Hill Book Co. (1966)

[16] N E Steenrod, The work and influence of Professor S. Lefschetz in algebraic topology, from: "Algebraic geometry and topology. A symposium in honor of S. Lefschetz", Princeton University Press (1957) 24

[17] S O Wilson, Partial Algebras Over Operads of Complexes and Applications

Cité par Sources :