Dense embeddings of surface groups
Geometry & topology, Tome 10 (2006) no. 3, pp. 1373-1389.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We discuss dense embeddings of surface groups and fully residually free groups in topological groups. We show that a compact topological group contains a nonabelian dense free group of finite rank if and only if it contains a dense surface group. Also, we obtain a characterization of those Lie groups which admit a dense faithfully embedded surface group. Similarly, we show that any connected semisimple Lie group contains a dense copy of any fully residually free group.

DOI : 10.2140/gt.2006.10.1373
Keywords: surface group, topological group, fully residually free

Breuillard, Emmanuel 1 ; Gelander, Tsachik 2 ; Souto, Juan 3 ; Storm, Peter 4

1 Université de Lille, UFR de Mathematiques, 59655 Villeneuve d’Ascq, FRANCE
2 Mathematics Department, Yale University, 10 Hillhouse ave, New Haven CT 06511, USA
3 Dept of Maths, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA
4 Stanford University, Mathematics, Bldg. 380, 450 Serra Mall, Stanford, CA 94305, USA
@article{GT_2006_10_3_a4,
     author = {Breuillard, Emmanuel and Gelander, Tsachik and Souto, Juan and Storm, Peter},
     title = {Dense embeddings of surface groups},
     journal = {Geometry & topology},
     pages = {1373--1389},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1373},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1373/}
}
TY  - JOUR
AU  - Breuillard, Emmanuel
AU  - Gelander, Tsachik
AU  - Souto, Juan
AU  - Storm, Peter
TI  - Dense embeddings of surface groups
JO  - Geometry & topology
PY  - 2006
SP  - 1373
EP  - 1389
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1373/
DO  - 10.2140/gt.2006.10.1373
ID  - GT_2006_10_3_a4
ER  - 
%0 Journal Article
%A Breuillard, Emmanuel
%A Gelander, Tsachik
%A Souto, Juan
%A Storm, Peter
%T Dense embeddings of surface groups
%J Geometry & topology
%D 2006
%P 1373-1389
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1373/
%R 10.2140/gt.2006.10.1373
%F GT_2006_10_3_a4
Breuillard, Emmanuel; Gelander, Tsachik; Souto, Juan; Storm, Peter. Dense embeddings of surface groups. Geometry & topology, Tome 10 (2006) no. 3, pp. 1373-1389. doi : 10.2140/gt.2006.10.1373. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1373/

[1] M Abert, Y Glasner, Generic groups acting on a regular tree, preprint

[2] G Baumslag, On generalised free products, Math. Z. 78 (1962) 423

[3] E Breuillard, T Gelander, A topological Tits alternative, to appear in Annals of Math.

[4] E Breuillard, T Gelander, On dense free subgroups of Lie groups, J. Algebra 261 (2003) 448

[5] Y De Cornulier, A Mann, Some residually finite groups satisfying laws, to appear in the proceedings of the conference “Asymptotic and Probabilistic Methods in Geometric Group Theory”, Geneva (2005)

[6] D B A Epstein, Almost all subgroups of a Lie group are free, J. Algebra 19 (1971) 261

[7] T Gelander, Y Glasner, Countable primitive groups, to appear in Geom. Funct. Anal.

[8] T Gelander, A Zuk, Dependence of Kazhdan constants on generating subsets, Israel J. Math. 129 (2002) 93

[9] V Kaloshin, The existential Hilbert 16–th problem and an estimate for cyclicity of elementary polycycles, Invent. Math. 151 (2003) 451

[10] A Lubotzky, B Weiss, Groups and expanders, from: "Expanding graphs (Princeton, NJ, 1992)", DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 10, Amer. Math. Soc. (1993) 95

[11] G A Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980) 233

[12] D Montgomery, L Zippin, Topological transformation groups, Interscience Publishers, New York-London (1955)

[13] Z Sela, Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31

[14] D Sullivan, For $n\gt 3$ there is only one finitely additive rotationally invariant measure on the $n$–sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. $($N.S.$)$ 4 (1981) 121

[15] J Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250

Cité par Sources :