Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We discuss dense embeddings of surface groups and fully residually free groups in topological groups. We show that a compact topological group contains a nonabelian dense free group of finite rank if and only if it contains a dense surface group. Also, we obtain a characterization of those Lie groups which admit a dense faithfully embedded surface group. Similarly, we show that any connected semisimple Lie group contains a dense copy of any fully residually free group.
Breuillard, Emmanuel 1 ; Gelander, Tsachik 2 ; Souto, Juan 3 ; Storm, Peter 4
@article{GT_2006_10_3_a4, author = {Breuillard, Emmanuel and Gelander, Tsachik and Souto, Juan and Storm, Peter}, title = {Dense embeddings of surface groups}, journal = {Geometry & topology}, pages = {1373--1389}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2006}, doi = {10.2140/gt.2006.10.1373}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1373/} }
TY - JOUR AU - Breuillard, Emmanuel AU - Gelander, Tsachik AU - Souto, Juan AU - Storm, Peter TI - Dense embeddings of surface groups JO - Geometry & topology PY - 2006 SP - 1373 EP - 1389 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1373/ DO - 10.2140/gt.2006.10.1373 ID - GT_2006_10_3_a4 ER -
%0 Journal Article %A Breuillard, Emmanuel %A Gelander, Tsachik %A Souto, Juan %A Storm, Peter %T Dense embeddings of surface groups %J Geometry & topology %D 2006 %P 1373-1389 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1373/ %R 10.2140/gt.2006.10.1373 %F GT_2006_10_3_a4
Breuillard, Emmanuel; Gelander, Tsachik; Souto, Juan; Storm, Peter. Dense embeddings of surface groups. Geometry & topology, Tome 10 (2006) no. 3, pp. 1373-1389. doi : 10.2140/gt.2006.10.1373. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1373/
[1] Generic groups acting on a regular tree, preprint
, ,[2] On generalised free products, Math. Z. 78 (1962) 423
,[3] A topological Tits alternative, to appear in Annals of Math.
, ,[4] On dense free subgroups of Lie groups, J. Algebra 261 (2003) 448
, ,[5] Some residually finite groups satisfying laws, to appear in the proceedings of the conference “Asymptotic and Probabilistic Methods in Geometric Group Theory”, Geneva (2005)
, ,[6] Almost all subgroups of a Lie group are free, J. Algebra 19 (1971) 261
,[7] Countable primitive groups, to appear in Geom. Funct. Anal.
, ,[8] Dependence of Kazhdan constants on generating subsets, Israel J. Math. 129 (2002) 93
, ,[9] The existential Hilbert 16–th problem and an estimate for cyclicity of elementary polycycles, Invent. Math. 151 (2003) 451
,[10] Groups and expanders, from: "Expanding graphs (Princeton, NJ, 1992)", DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 10, Amer. Math. Soc. (1993) 95
, ,[11] Some remarks on invariant means, Monatsh. Math. 90 (1980) 233
,[12] Topological transformation groups, Interscience Publishers, New York-London (1955)
, ,[13] Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31
,[14] For $n\gt 3$ there is only one finitely additive rotationally invariant measure on the $n$–sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. $($N.S.$)$ 4 (1981) 121
,[15] Free subgroups in linear groups, J. Algebra 20 (1972) 250
,Cité par Sources :