A dilogarithmic formula for the Cheeger–Chern–Simons class
Geometry & topology, Tome 10 (2006) no. 3, pp. 1347-1372.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We present a simplification of Neumann’s formula for the universal Cheeger–Chern–Simons class of the second Chern polynomial. Our approach is completely algebraic, and the final formula can be applied directly on a homology class in the bar complex.

DOI : 10.2140/gt.2006.10.1347
Keywords: Extended Bloch group, Cheeger–Chern–Simons class

Dupont, Johan 1 ; Zickert, Christian 2

1 Department of Mathematics, University of Aarhus, DK-8000 Århus, Denmark
2 Department of Mathematics, Columbia University, New York, NY 10027, USA
@article{GT_2006_10_3_a3,
     author = {Dupont, Johan and Zickert, Christian},
     title = {A dilogarithmic formula for the {Cheeger{\textendash}Chern{\textendash}Simons} class},
     journal = {Geometry & topology},
     pages = {1347--1372},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1347},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1347/}
}
TY  - JOUR
AU  - Dupont, Johan
AU  - Zickert, Christian
TI  - A dilogarithmic formula for the Cheeger–Chern–Simons class
JO  - Geometry & topology
PY  - 2006
SP  - 1347
EP  - 1372
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1347/
DO  - 10.2140/gt.2006.10.1347
ID  - GT_2006_10_3_a3
ER  - 
%0 Journal Article
%A Dupont, Johan
%A Zickert, Christian
%T A dilogarithmic formula for the Cheeger–Chern–Simons class
%J Geometry & topology
%D 2006
%P 1347-1372
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1347/
%R 10.2140/gt.2006.10.1347
%F GT_2006_10_3_a3
Dupont, Johan; Zickert, Christian. A dilogarithmic formula for the Cheeger–Chern–Simons class. Geometry & topology, Tome 10 (2006) no. 3, pp. 1347-1372. doi : 10.2140/gt.2006.10.1347. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1347/

[1] J Cheeger, J Simons, Differential characters and geometric invariants, from: "Geometry and topology (College Park, Md., 1983/84)", Lecture Notes in Math. 1167, Springer (1985) 50

[2] S S Chern, J Simons, Characteristic forms and geometric invariants, Ann. of Math. $(2)$ 99 (1974) 48

[3] J L Dupont, The dilogarithm as a characteristic class for flat bundles, J. Pure Appl. Algebra 44 (1987) 137

[4] J L Dupont, Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics 1, World Scientific Publishing Co. (2001)

[5] J L Dupont, W Parry, C H Sah, Homology of classical Lie groups made discrete II: $H_ 2,H_3,$ and relations with scissors congruences, J. Algebra 113 (1988) 215

[6] J L Dupont, C H Sah, Scissors congruences II, J. Pure Appl. Algebra 25 (1982) 159

[7] W D Neumann, Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413

[8] W D Neumann, J Yang, Bloch invariants of hyperbolic 3–manifolds, Duke Math. J. 96 (1999) 29

[9] W Parry, C H Sah, Third homology of $\mathrm{SL}(2,\mathbb{R})$ made discrete, J. Pure Appl. Algebra 30 (1983) 181

[10] C H Sah, Homology of classical Lie groups made discrete III, J. Pure Appl. Algebra 56 (1989) 269

Cité par Sources :