Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We present a simplification of Neumann’s formula for the universal Cheeger–Chern–Simons class of the second Chern polynomial. Our approach is completely algebraic, and the final formula can be applied directly on a homology class in the bar complex.
Dupont, Johan 1 ; Zickert, Christian 2
@article{GT_2006_10_3_a3, author = {Dupont, Johan and Zickert, Christian}, title = {A dilogarithmic formula for the {Cheeger{\textendash}Chern{\textendash}Simons} class}, journal = {Geometry & topology}, pages = {1347--1372}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2006}, doi = {10.2140/gt.2006.10.1347}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1347/} }
TY - JOUR AU - Dupont, Johan AU - Zickert, Christian TI - A dilogarithmic formula for the Cheeger–Chern–Simons class JO - Geometry & topology PY - 2006 SP - 1347 EP - 1372 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1347/ DO - 10.2140/gt.2006.10.1347 ID - GT_2006_10_3_a3 ER -
Dupont, Johan; Zickert, Christian. A dilogarithmic formula for the Cheeger–Chern–Simons class. Geometry & topology, Tome 10 (2006) no. 3, pp. 1347-1372. doi : 10.2140/gt.2006.10.1347. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1347/
[1] Differential characters and geometric invariants, from: "Geometry and topology (College Park, Md., 1983/84)", Lecture Notes in Math. 1167, Springer (1985) 50
, ,[2] Characteristic forms and geometric invariants, Ann. of Math. $(2)$ 99 (1974) 48
, ,[3] The dilogarithm as a characteristic class for flat bundles, J. Pure Appl. Algebra 44 (1987) 137
,[4] Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics 1, World Scientific Publishing Co. (2001)
,[5] Homology of classical Lie groups made discrete II: $H_ 2,H_3,$ and relations with scissors congruences, J. Algebra 113 (1988) 215
, , ,[6] Scissors congruences II, J. Pure Appl. Algebra 25 (1982) 159
, ,[7] Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413
,[8] Bloch invariants of hyperbolic 3–manifolds, Duke Math. J. 96 (1999) 29
, ,[9] Third homology of $\mathrm{SL}(2,\mathbb{R})$ made discrete, J. Pure Appl. Algebra 30 (1983) 181
, ,[10] Homology of classical Lie groups made discrete III, J. Pure Appl. Algebra 56 (1989) 269
,Cité par Sources :