Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed transitive subgroup of which contains a non-constant continuous path . We show that up to conjugation is one of the following groups: , , , , . This verifies the classification suggested by Ghys in [Enseign. Math. 47 (2001) 329-407]. As a corollary we show that the group is a maximal closed subgroup of (we understand this is a conjecture of de la Harpe). We also show that if such a group acts continuously transitively on –tuples of points, , then the closure of is (cf Bestvina’s collection of ‘Questions in geometric group theory’).
Giblin, James 1 ; Markovic, Vladimir 1
@article{GT_2006_10_3_a2, author = {Giblin, James and Markovic, Vladimir}, title = {Classification of continuously transitive circle groups}, journal = {Geometry & topology}, pages = {1319--1346}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2006}, doi = {10.2140/gt.2006.10.1319}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1319/} }
TY - JOUR AU - Giblin, James AU - Markovic, Vladimir TI - Classification of continuously transitive circle groups JO - Geometry & topology PY - 2006 SP - 1319 EP - 1346 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1319/ DO - 10.2140/gt.2006.10.1319 ID - GT_2006_10_3_a2 ER -
Giblin, James; Markovic, Vladimir. Classification of continuously transitive circle groups. Geometry & topology, Tome 10 (2006) no. 3, pp. 1319-1346. doi : 10.2140/gt.2006.10.1319. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1319/
[1] Questions in geometric group theory
,[2] Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441
, ,[3] Convergence groups are Fuchsian groups, Ann. of Math. $(2)$ 136 (1992) 447
,[4] Discrete quasiconformal groups I, Proc. London Math. Soc. $(3)$ 55 (1987) 331
, ,[5] Groups acting on the circle, Enseign. Math. $(2)$ 47 (2001) 329
,[6] Abelian and nondiscrete convergence groups on the circle, Trans. Amer. Math. Soc. 318 (1990) 87
,[7] Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1
,Cité par Sources :