Classification of continuously transitive circle groups
Geometry & topology, Tome 10 (2006) no. 3, pp. 1319-1346.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let G be a closed transitive subgroup of Homeo(S1) which contains a non-constant continuous path f : [0,1] G. We show that up to conjugation G is one of the following groups: SO(2, ), PSL(2, ), PSLk(2, ), Homeok(S1), Homeo(S1). This verifies the classification suggested by Ghys in [Enseign. Math. 47 (2001) 329-407]. As a corollary we show that the group PSL(2, ) is a maximal closed subgroup of Homeo(S1) (we understand this is a conjecture of de la Harpe). We also show that if such a group G < Homeo(S1) acts continuously transitively on k–tuples of points, k > 3, then the closure of G is Homeo(S1) (cf Bestvina’s collection of ‘Questions in geometric group theory’).

DOI : 10.2140/gt.2006.10.1319
Keywords: Circle group, convergence group, transitive group, cyclic cover

Giblin, James 1 ; Markovic, Vladimir 1

1 Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
@article{GT_2006_10_3_a2,
     author = {Giblin, James and Markovic, Vladimir},
     title = {Classification of continuously transitive circle groups},
     journal = {Geometry & topology},
     pages = {1319--1346},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1319},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1319/}
}
TY  - JOUR
AU  - Giblin, James
AU  - Markovic, Vladimir
TI  - Classification of continuously transitive circle groups
JO  - Geometry & topology
PY  - 2006
SP  - 1319
EP  - 1346
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1319/
DO  - 10.2140/gt.2006.10.1319
ID  - GT_2006_10_3_a2
ER  - 
%0 Journal Article
%A Giblin, James
%A Markovic, Vladimir
%T Classification of continuously transitive circle groups
%J Geometry & topology
%D 2006
%P 1319-1346
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1319/
%R 10.2140/gt.2006.10.1319
%F GT_2006_10_3_a2
Giblin, James; Markovic, Vladimir. Classification of continuously transitive circle groups. Geometry & topology, Tome 10 (2006) no. 3, pp. 1319-1346. doi : 10.2140/gt.2006.10.1319. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1319/

[1] M Bestvina, Questions in geometric group theory

[2] A Casson, D Jungreis, Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441

[3] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. $(2)$ 136 (1992) 447

[4] F W Gehring, G J Martin, Discrete quasiconformal groups I, Proc. London Math. Soc. $(3)$ 55 (1987) 331

[5] É Ghys, Groups acting on the circle, Enseign. Math. $(2)$ 47 (2001) 329

[6] A Hinkkanen, Abelian and nondiscrete convergence groups on the circle, Trans. Amer. Math. Soc. 318 (1990) 87

[7] P Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1

Cité par Sources :