Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A theorem of Kirby states that two framed links in the –sphere produce orientation-preserving homeomorphic results of surgery if they are related by a sequence of stabilization and handle-slide moves. The purpose of the present paper is twofold: First, we give a sufficient condition for a sequence of handle-slides on framed links to be able to be replaced with a sequences of algebraically canceling pairs of handle-slides. Then, using the first result, we obtain a refinement of Kirby’s calculus for integral homology spheres which involves only –framed links with zero linking numbers.
Habiro, Kazuo 1
@article{GT_2006_10_3_a1, author = {Habiro, Kazuo}, title = {Refined {Kirby} calculus for integral homology spheres}, journal = {Geometry & topology}, pages = {1285--1317}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2006}, doi = {10.2140/gt.2006.10.1285}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1285/} }
Habiro, Kazuo. Refined Kirby calculus for integral homology spheres. Geometry & topology, Tome 10 (2006) no. 3, pp. 1285-1317. doi : 10.2140/gt.2006.10.1285. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1285/
[1] Generalizations of the Kervaire invariant, Ann. of Math. $(2)$ 95 (1972) 368
,[2] On Kirby's calculus of links, Topology 18 (1979) 1
, ,[3] A surgery view of boundary links, Math. Ann. 327 (2003) 103
, ,[4] Finite type invariants and $n$–equivalence of $3$–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517
,[5] Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1
,[6] On the quantum $\mathrm{sl}_2$ invariants of knots and integral homology spheres, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4 (2002) 55
,[7] A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres, preprint (2006)
,[8]
, , in preparation[9] A formula for Casson's invariant, Trans. Amer. Math. Soc. 297 (1986) 547
,[10] A calculus for framed links in $S^3$, Invent. Math. 45 (1978) 35
,[11] The topology of $4$–manifolds, Lecture Notes in Mathematics 1374, Springer (1989)
,[12] The $3$–manifold invariants of Witten and Reshetikhin–Turaev for $\mathrm{sl}(2,\mathbb{C})$, Invent. Math. 105 (1991) 473
, ,[13] Local surgery formulas for quantum invariants and the Arf invariant, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7 (2004) 213
, ,[14] An invariant of integral homology $3$–spheres which is universal for all finite type invariants, from: "Solitons, geometry, and topology: on the crossroad", Amer. Math. Soc. Transl. Ser. 2 179, Amer. Math. Soc. (1997) 75
,[15] On a universal perturbative invariant of $3$–manifolds, Topology 37 (1998) 539
, , ,[16] A representation of orientable combinatorial $3$–manifolds, Ann. of Math. $(2)$ 76 (1962) 531
,[17] Combinatorial group theory, Dover Publications (1976)
, , ,[18] An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 119
,[19] Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924) 169
,[20] Finite type invariants of integral homology $3$–spheres, J. Knot Theory Ramifications 5 (1996) 101
,[21] Problems on invariants of knots and 3–manifolds, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4 (2002) 377
,[22] Invariants of $3$–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547
, ,[23] Rational surgery calculus: extension of Kirby's theorem, Pacific J. Math. 110 (1984) 377
,[24] On the orthogonal groups of unimodular quadratic forms II, J. Reine Angew. Math. 213 (1963/1964) 122
,[25] Modifications and cobounding manifolds, Canad. J. Math. 12 (1960) 503
,[26] Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351
,Cité par Sources :