Refined Kirby calculus for integral homology spheres
Geometry & topology, Tome 10 (2006) no. 3, pp. 1285-1317.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A theorem of Kirby states that two framed links in the 3–sphere produce orientation-preserving homeomorphic results of surgery if they are related by a sequence of stabilization and handle-slide moves. The purpose of the present paper is twofold: First, we give a sufficient condition for a sequence of handle-slides on framed links to be able to be replaced with a sequences of algebraically canceling pairs of handle-slides. Then, using the first result, we obtain a refinement of Kirby’s calculus for integral homology spheres which involves only ± 1–framed links with zero linking numbers.

DOI : 10.2140/gt.2006.10.1285
Keywords: Kirby calculus, framed link, surgery, handle-slide, integral homology sphere, band-slide, Hoste move

Habiro, Kazuo 1

1 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606–8502, Japan
@article{GT_2006_10_3_a1,
     author = {Habiro, Kazuo},
     title = {Refined {Kirby} calculus for integral homology spheres},
     journal = {Geometry & topology},
     pages = {1285--1317},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1285},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1285/}
}
TY  - JOUR
AU  - Habiro, Kazuo
TI  - Refined Kirby calculus for integral homology spheres
JO  - Geometry & topology
PY  - 2006
SP  - 1285
EP  - 1317
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1285/
DO  - 10.2140/gt.2006.10.1285
ID  - GT_2006_10_3_a1
ER  - 
%0 Journal Article
%A Habiro, Kazuo
%T Refined Kirby calculus for integral homology spheres
%J Geometry & topology
%D 2006
%P 1285-1317
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1285/
%R 10.2140/gt.2006.10.1285
%F GT_2006_10_3_a1
Habiro, Kazuo. Refined Kirby calculus for integral homology spheres. Geometry & topology, Tome 10 (2006) no. 3, pp. 1285-1317. doi : 10.2140/gt.2006.10.1285. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1285/

[1] E H Brown Jr., Generalizations of the Kervaire invariant, Ann. of Math. $(2)$ 95 (1972) 368

[2] R Fenn, C Rourke, On Kirby's calculus of links, Topology 18 (1979) 1

[3] S Garoufalidis, A Kricker, A surgery view of boundary links, Math. Ann. 327 (2003) 103

[4] M Goussarov, Finite type invariants and $n$–equivalence of $3$–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517

[5] K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1

[6] K Habiro, On the quantum $\mathrm{sl}_2$ invariants of knots and integral homology spheres, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4 (2002) 55

[7] K Habiro, A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres, preprint (2006)

[8] K Habiro, T T Q Le, in preparation

[9] J Hoste, A formula for Casson's invariant, Trans. Amer. Math. Soc. 297 (1986) 547

[10] R Kirby, A calculus for framed links in $S^3$, Invent. Math. 45 (1978) 35

[11] R C Kirby, The topology of $4$–manifolds, Lecture Notes in Mathematics 1374, Springer (1989)

[12] R Kirby, P Melvin, The $3$–manifold invariants of Witten and Reshetikhin–Turaev for $\mathrm{sl}(2,\mathbb{C})$, Invent. Math. 105 (1991) 473

[13] R Kirby, P Melvin, Local surgery formulas for quantum invariants and the Arf invariant, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7 (2004) 213

[14] T T Q Le, An invariant of integral homology $3$–spheres which is universal for all finite type invariants, from: "Solitons, geometry, and topology: on the crossroad", Amer. Math. Soc. Transl. Ser. 2 179, Amer. Math. Soc. (1997) 75

[15] T T Q Le, J Murakami, T Ohtsuki, On a universal perturbative invariant of $3$–manifolds, Topology 37 (1998) 539

[16] W B R Lickorish, A representation of orientable combinatorial $3$–manifolds, Ann. of Math. $(2)$ 76 (1962) 531

[17] W Magnus, A Karrass, D Solitar, Combinatorial group theory, Dover Publications (1976)

[18] Y Matsumoto, An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 119

[19] J Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924) 169

[20] T Ohtsuki, Finite type invariants of integral homology $3$–spheres, J. Knot Theory Ramifications 5 (1996) 101

[21] T Ohtsuki, Problems on invariants of knots and 3–manifolds, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4 (2002) 377

[22] N Reshetikhin, V G Turaev, Invariants of $3$–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547

[23] D Rolfsen, Rational surgery calculus: extension of Kirby's theorem, Pacific J. Math. 110 (1984) 377

[24] C T C Wall, On the orthogonal groups of unimodular quadratic forms II, J. Reine Angew. Math. 213 (1963/1964) 122

[25] A H Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960) 503

[26] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351

Cité par Sources :