On canonical triangulations of once-punctured torus bundles and two-bridge link complements
Geometry & topology, Tome 10 (2006) no. 3, pp. 1239-1284.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the hyperbolization theorem for punctured torus bundles and two-bridge link complements by decomposing them into ideal tetrahedra which are then given hyperbolic structures, following Rivin’s volume maximization principle.

DOI : 10.2140/gt.2006.10.1239
Keywords: hyperbolic geometry, hyperbolic volume, ideal triangulations, surface bundles, two-bridge links, angle structures

Guéritaud, François 1

1 DMA, École normale supérieure, CNRS, 45 rue d’Ulm, 75005 Paris, France
@article{GT_2006_10_3_a0,
     author = {Gu\'eritaud, Fran\c{c}ois},
     title = {On canonical triangulations of once-punctured torus bundles and two-bridge link complements},
     journal = {Geometry & topology},
     pages = {1239--1284},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2006},
     doi = {10.2140/gt.2006.10.1239},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1239/}
}
TY  - JOUR
AU  - Guéritaud, François
TI  - On canonical triangulations of once-punctured torus bundles and two-bridge link complements
JO  - Geometry & topology
PY  - 2006
SP  - 1239
EP  - 1284
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1239/
DO  - 10.2140/gt.2006.10.1239
ID  - GT_2006_10_3_a0
ER  - 
%0 Journal Article
%A Guéritaud, François
%T On canonical triangulations of once-punctured torus bundles and two-bridge link complements
%J Geometry & topology
%D 2006
%P 1239-1284
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1239/
%R 10.2140/gt.2006.10.1239
%F GT_2006_10_3_a0
Guéritaud, François. On canonical triangulations of once-punctured torus bundles and two-bridge link complements. Geometry & topology, Tome 10 (2006) no. 3, pp. 1239-1284. doi : 10.2140/gt.2006.10.1239. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1239/

[1] C C Adams, Thrice-punctured spheres in hyperbolic 3–manifolds, Trans. Amer. Math. Soc. 287 (1985) 645

[2] I Agol, Small 3–manifolds of large genus, Geom. Dedicata 102 (2003) 53

[3] I Agol, P Storm, W Thurston, Lower bounds on volumes of hyperbolic Haken 3–manifolds

[4] H Akiyoshi, On the Ford domains of once-punctured torus groups, Sūrikaisekikenkyūsho Kōkyūroku (1999) 109

[5] H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Ford domains of punctured torus groups and two–bridge knot groups, from: "Knot Theory: dedicated to 70th birthday of Prof. Kunio Murasugi" (editor M Sakuma) (2000)

[6] H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Jørgensen's picture of punctured torus groups and its refinement, from: "Kleinian groups and hyperbolic 3–manifolds (Warwick, 2001)", London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press (2003) 247

[7] P Alestalo, H Helling, On torus fibrations over the circle, Sonderforschungsbereich SFB-343 (1997)

[8] J F Brock, Weil–Petersson translation distance and volumes of mapping tori, Comm. Anal. Geom. 11 (2003) 987

[9] K Chan, Constructing hyperbolic 3–manifolds, Undergraduate thesis, University of Melbourne (2002)

[10] Y Colin De Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991) 655

[11] F Guéritaud, Triangulated cores of punctured–torus groups

[12] H Helling, The trace fields of a series of hyperbolic manifolds, Sonderforschungsbereich SFB-343 (1999)

[13] T Koch, Fordsche Fundamentalbereiche hyperbolischer einfach-punktierter Torus-Bündel, Sonderforschungsbereich SFB-343 (1999)

[14] M Lackenby, The canonical decomposition of once-punctured torus bundles, Comment. Math. Helv. 78 (2003) 363

[15] M Lackenby, The volume of hyperbolic alternating link complements, \rmWith an appendix by Ian Agol and Dylan Thurston, Proc. London Math. Soc. $(3)$ 88 (2004) 204

[16] W Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984) 37

[17] W Menasco, M Thistlethwaite, The classification of alternating links, Ann. of Math. $(2)$ 138 (1993) 113

[18] J Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 9

[19] Y N Minsky, The classification of punctured-torus groups, Ann. of Math. $(2)$ 149 (1999) 559

[20] K Murasugi, Knot theory and its applications, Birkhäuser (1996)

[21] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307

[22] J P Otal, Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque (1996)

[23] I Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. $(2)$ 139 (1994) 553

[24] M Sakuma, J Weeks, Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. $($N.S.$)$ 21 (1995) 393

[25] M B Thistlethwaite, On the algebraic part of an alternating link, Pacific J. Math. 151 (1991) 317

Cité par Sources :