Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove the hyperbolization theorem for punctured torus bundles and two-bridge link complements by decomposing them into ideal tetrahedra which are then given hyperbolic structures, following Rivin’s volume maximization principle.
Guéritaud, François 1
@article{GT_2006_10_3_a0, author = {Gu\'eritaud, Fran\c{c}ois}, title = {On canonical triangulations of once-punctured torus bundles and two-bridge link complements}, journal = {Geometry & topology}, pages = {1239--1284}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2006}, doi = {10.2140/gt.2006.10.1239}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1239/} }
TY - JOUR AU - Guéritaud, François TI - On canonical triangulations of once-punctured torus bundles and two-bridge link complements JO - Geometry & topology PY - 2006 SP - 1239 EP - 1284 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1239/ DO - 10.2140/gt.2006.10.1239 ID - GT_2006_10_3_a0 ER -
%0 Journal Article %A Guéritaud, François %T On canonical triangulations of once-punctured torus bundles and two-bridge link complements %J Geometry & topology %D 2006 %P 1239-1284 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1239/ %R 10.2140/gt.2006.10.1239 %F GT_2006_10_3_a0
Guéritaud, François. On canonical triangulations of once-punctured torus bundles and two-bridge link complements. Geometry & topology, Tome 10 (2006) no. 3, pp. 1239-1284. doi : 10.2140/gt.2006.10.1239. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1239/
[1] Thrice-punctured spheres in hyperbolic 3–manifolds, Trans. Amer. Math. Soc. 287 (1985) 645
,[2] Small 3–manifolds of large genus, Geom. Dedicata 102 (2003) 53
,[3] Lower bounds on volumes of hyperbolic Haken 3–manifolds
, , ,[4] On the Ford domains of once-punctured torus groups, Sūrikaisekikenkyūsho Kōkyūroku (1999) 109
,[5] Ford domains of punctured torus groups and two–bridge knot groups, from: "Knot Theory: dedicated to 70th birthday of Prof. Kunio Murasugi" (editor M Sakuma) (2000)
, , , ,[6] Jørgensen's picture of punctured torus groups and its refinement, from: "Kleinian groups and hyperbolic 3–manifolds (Warwick, 2001)", London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press (2003) 247
, , , ,[7] On torus fibrations over the circle, Sonderforschungsbereich SFB-343 (1997)
, ,[8] Weil–Petersson translation distance and volumes of mapping tori, Comm. Anal. Geom. 11 (2003) 987
,[9] Constructing hyperbolic 3–manifolds, Undergraduate thesis, University of Melbourne (2002)
,[10] Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991) 655
,[11] Triangulated cores of punctured–torus groups
,[12] The trace fields of a series of hyperbolic manifolds, Sonderforschungsbereich SFB-343 (1999)
,[13] Fordsche Fundamentalbereiche hyperbolischer einfach-punktierter Torus-Bündel, Sonderforschungsbereich SFB-343 (1999)
,[14] The canonical decomposition of once-punctured torus bundles, Comment. Math. Helv. 78 (2003) 363
,[15] The volume of hyperbolic alternating link complements, \rmWith an appendix by Ian Agol and Dylan Thurston, Proc. London Math. Soc. $(3)$ 88 (2004) 204
,[16] Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984) 37
,[17] The classification of alternating links, Ann. of Math. $(2)$ 138 (1993) 113
, ,[18] Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 9
,[19] The classification of punctured-torus groups, Ann. of Math. $(2)$ 149 (1999) 559
,[20] Knot theory and its applications, Birkhäuser (1996)
,[21] Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307
, ,[22] Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque (1996)
,[23] Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. $(2)$ 139 (1994) 553
,[24] Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. $($N.S.$)$ 21 (1995) 393
, ,[25] On the algebraic part of an alternating link, Pacific J. Math. 151 (1991) 317
,Cité par Sources :