Euler structures, the variety of representations and the Milnor–Turaev torsion
Geometry & topology, Tome 10 (2006) no. 2, pp. 1185-1238.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper we extend and Poincaré dualize the concept of Euler structures, introduced by Turaev for manifolds with vanishing Euler–Poincaré characteristic, to arbitrary manifolds. We use the Poincaré dual concept, co-Euler structures, to remove all geometric ambiguities from the Ray–Singer torsion by providing a slightly modified object which is a topological invariant. We show that when the co-Euler structure is integral then the modified Ray–Singer torsion when regarded as a function on the variety of generically acyclic complex representations of the fundamental group of the manifold is the absolute value of a rational function which we call in this paper the Milnor–Turaev torsion.

DOI : 10.2140/gt.2006.10.1185
Keywords: Euler structure, co-Euler structure, combinatorial torsion, analytic torsion, theorem of Bismut–Zhang, Chern–Simons theory, geometric regularization, mapping torus, rational function

Burghelea, Dan 1 ; Haller, Stefan 2

1 Dept. of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, OH 43210, USA
2 Department of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090, Vienna, Austria
@article{GT_2006_10_2_a12,
     author = {Burghelea, Dan and Haller, Stefan},
     title = {Euler structures, the variety of representations and the {Milnor{\textendash}Turaev} torsion},
     journal = {Geometry & topology},
     pages = {1185--1238},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.1185},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1185/}
}
TY  - JOUR
AU  - Burghelea, Dan
AU  - Haller, Stefan
TI  - Euler structures, the variety of representations and the Milnor–Turaev torsion
JO  - Geometry & topology
PY  - 2006
SP  - 1185
EP  - 1238
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1185/
DO  - 10.2140/gt.2006.10.1185
ID  - GT_2006_10_2_a12
ER  - 
%0 Journal Article
%A Burghelea, Dan
%A Haller, Stefan
%T Euler structures, the variety of representations and the Milnor–Turaev torsion
%J Geometry & topology
%D 2006
%P 1185-1238
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1185/
%R 10.2140/gt.2006.10.1185
%F GT_2006_10_2_a12
Burghelea, Dan; Haller, Stefan. Euler structures, the variety of representations and the Milnor–Turaev torsion. Geometry & topology, Tome 10 (2006) no. 2, pp. 1185-1238. doi : 10.2140/gt.2006.10.1185. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1185/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405

[2] J M Bismut, W Zhang, An extension of a theorem by Cheeger and Müller, Astérisque (1992) 235

[3] M Braverman, T Kappeler, Ray–Singer type theorem for the refined analytic torsion

[4] M Braverman, T Kappeler, Refined analytic torsion

[5] M Braverman, T Kappeler, Refined analytic torsion as an element of the determinant line

[6] M Braverman, T Kappeler, A refinement of the Ray–Singer torsion, C. R. Math. Acad. Sci. Paris 341 (2005) 497

[7] D Burghelea, Removing metric anomalies from Ray–Singer torsion, Lett. Math. Phys. 47 (1999) 149

[8] D Burghelea, L Friedlander, T Kappeler, Relative torsion, Commun. Contemp. Math. 3 (2001) 15

[9] D Burghelea, S Haller, Complex valued Ray–Singer torsion

[10] D Burghelea, S Haller, Dynamics, Laplace transform and spectral geometry

[11] D Burghelea, S Haller, Torsion, as function on the space of representations

[12] S Dineen, Complex analysis in locally convex spaces, North-Holland Mathematics Studies 57, North-Holland Publishing Co. (1981)

[13] J Eells Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966) 751

[14] M Farber, Absolute torsion and eta-invariant, Math. Z. 234 (2000) 339

[15] M Farber, V Turaev, Poincaré–Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math. 520 (2000) 195

[16] D Fried, Lefschetz formulas for flows, from: "The Lefschetz centennial conference, Part III (Mexico City, 1984)", Contemp. Math. 58, Amer. Math. Soc. (1987) 19

[17] P Griffiths, J Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley Sons] (1978)

[18] R Hartshorne, Algebraic geometry, Springer (1977)

[19] E Hille, R S Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications 31, American Mathematical Society (1957)

[20] F Kamber, P Tondeur, Flat bundles and characteristic classes of group-representations, Amer. J. Math. 89 (1967) 857

[21] A Kriegl, P W Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs 53, American Mathematical Society (1997)

[22] J Marcsik, Analytic torsion and closed one forms, PhD thesis, Ohio State University (1995)

[23] V Mathai, D Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986) 85

[24] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358

[25] L I Nicolaescu, The Reidemeister torsion of 3–manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter Co. (2003)

[26] D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96

[27] J P Ramis, Sous-ensembles analytiques d'une variété banachique complexe, Springer (1970)

[28] D B Ray, I M Singer, $R$–torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145

[29] N Steenrod, The topology of fibre bundles, Princeton Landmarks in Mathematics, Princeton University Press (1999)

[30] V G Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97, 240

[31] V G Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672

[32] V Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)

[33] V Turaev, Torsions of 3–dimensional manifolds, Progress in Mathematics 208, Birkhäuser Verlag (2002)

[34] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)

Cité par Sources :