Existence of ruled wrappings in hyperbolic 3–manifolds
Geometry & topology, Tome 10 (2006) no. 2, pp. 1173-1184.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We present a short elementary proof of an existence theorem of certain CAT(1)–surfaces in open hyperbolic 3–manifolds. The main construction lemma in Calegari and Gabai’s proof of Marden’s Tameness Conjecture can be replaced by an applicable version of our theorem. Finally, we will give a short proof of the conjecture along their ideas.

DOI : 10.2140/gt.2006.10.1173
Keywords: hyperbolic $3$–manifolds, ruled wrappings, Marden's tameness conjecture

Soma, Teruhiko 1

1 Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan
@article{GT_2006_10_2_a11,
     author = {Soma, Teruhiko},
     title = {Existence of ruled wrappings in hyperbolic 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {1173--1184},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.1173},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1173/}
}
TY  - JOUR
AU  - Soma, Teruhiko
TI  - Existence of ruled wrappings in hyperbolic 3–manifolds
JO  - Geometry & topology
PY  - 2006
SP  - 1173
EP  - 1184
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1173/
DO  - 10.2140/gt.2006.10.1173
ID  - GT_2006_10_2_a11
ER  - 
%0 Journal Article
%A Soma, Teruhiko
%T Existence of ruled wrappings in hyperbolic 3–manifolds
%J Geometry & topology
%D 2006
%P 1173-1184
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1173/
%R 10.2140/gt.2006.10.1173
%F GT_2006_10_2_a11
Soma, Teruhiko. Existence of ruled wrappings in hyperbolic 3–manifolds. Geometry & topology, Tome 10 (2006) no. 2, pp. 1173-1184. doi : 10.2140/gt.2006.10.1173. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1173/

[1] I Agol, Tameness of hyperbolic 3–manifolds

[2] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. $(2)$ 124 (1986) 71

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren series 319, Springer (1999)

[4] M G Brin, T L Thickstun, Open, irreducible 3–manifolds which are end 1–movable, Topology 26 (1987) 211

[5] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385

[6] R D Canary, Ends of hyperbolic 3–manifolds, J. Amer. Math. Soc. 6 (1993) 1

[7] S Choi, Drilling cores of hyperbolic 3–manifolds to prove tameness, preprint (2004)

[8] A Marden, The geometry of finitely generated kleinian groups, Ann. of Math. $(2)$ 99 (1974) 383

[9] R Myers, End reductions, fundamental groups, and covering spaces of irreducible open 3–manifolds, Geom. Topol. 9 (2005) 971

[10] G P Scott, Compact submanifolds of 3–manifolds, J. London Math. Soc. $(2)$ 7 (1973) 246

[11] J Simon, Compactification of covering spaces of compact 3–manifolds, Michigan Math. J. 23 (1976)

[12] T Soma, Covering 3–manifolds with almost compact interior, Quart. J. Math. Oxford Ser. $(2)$ 44 (1993) 345

[13] J Souto, A note on the tameness of hyperbolic 3–manifolds, Topology 44 (2005) 459

[14] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56

Cité par Sources :