Siegel–Veech constants in ℋ(2)
Geometry & topology, Tome 10 (2006) no. 2, pp. 1157-1172.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Abelian differentials on Riemann surfaces can be seen as translation surfaces, which are flat surfaces with cone-type singularities. Closed geodesics for the associated flat metrics form cylinders whose number under a given maximal length was proved by Eskin and Masur to generically have quadratic asymptotics in this length, with a common coefficient constant for the quadratic asymptotics called a Siegel–Veech constant which is shared by almost all surfaces in each moduli space of translation surfaces.

Square-tiled surfaces are specific translation surfaces which have their own quadratic asymptotics for the number of cylinders of closed geodesics. It is an interesting question whether the Siegel–Veech constant of a given moduli space can be recovered as a limit of individual constants of square-tiled surfaces in this moduli space. We prove that this is the case in the moduli space (2) of translation surfaces of genus two with one singularity.

DOI : 10.2140/gt.2006.10.1157
Keywords: abelian differentials, moduli space, geodesics

Lelièvre, Samuel 1

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
@article{GT_2006_10_2_a10,
     author = {Leli\`evre, Samuel},
     title = {Siegel{\textendash}Veech constants in {\ensuremath{\mathscr{H}}(2)}},
     journal = {Geometry & topology},
     pages = {1157--1172},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.1157},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1157/}
}
TY  - JOUR
AU  - Lelièvre, Samuel
TI  - Siegel–Veech constants in ℋ(2)
JO  - Geometry & topology
PY  - 2006
SP  - 1157
EP  - 1172
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1157/
DO  - 10.2140/gt.2006.10.1157
ID  - GT_2006_10_2_a10
ER  - 
%0 Journal Article
%A Lelièvre, Samuel
%T Siegel–Veech constants in ℋ(2)
%J Geometry & topology
%D 2006
%P 1157-1172
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1157/
%R 10.2140/gt.2006.10.1157
%F GT_2006_10_2_a10
Lelièvre, Samuel. Siegel–Veech constants in ℋ(2). Geometry & topology, Tome 10 (2006) no. 2, pp. 1157-1172. doi : 10.2140/gt.2006.10.1157. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1157/

[1] F Dal’Bo, M Peigné, Comportement asymptotique du nombre de géodésiques fermées sur la surface modulaire en courbure non constante, Astérisque (1996) 111

[2] A Eskin, J Marklof, D Witte Morris, Unipotent flows on the space of branched covers of Veech surfaces, Ergodic Theory Dynam. Systems 26 (2006) 129

[3] A Eskin, H Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems 21 (2001) 443

[4] A Eskin, H Masur, M Schmoll, Billiards in rectangles with barriers, Duke Math. J. 118 (2003) 427

[5] A Eskin, H Masur, A Zorich, Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math. Inst. Hautes Études Sci. (2003) 61

[6] C Faivre, Distribution of Lévy constants for quadratic numbers, Acta Arith. 61 (1992) 13

[7] E Gutkin, C Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000) 191

[8] P Hubert, S Lelièvre, Prime arithmetic Teichmüller discs in $\mathcal{H}(2)$, Israel J. Math. 151 (2006) 281

[9] S Lelièvre, E Royer, Orbitwise countings in $\mathcal{H}(2)$ and quasimodular forms, to appear in Internat. Math. Res. Notices (2006)

[10] H Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, from: "Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986)" (editor D Drasin), Math. Sci. Res. Inst. Publ. 10, Springer (1988) 215

[11] H Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems 10 (1990) 151

[12] C T Mcmullen, Teichmüller curves in genus two: discriminant and spin, Math. Ann. 333 (2005) 87

[13] M Schmoll, On the asymptotic quadratic growth rate of saddle connections and periodic orbits on marked flat tori, Geom. Funct. Anal. 12 (2002) 622

[14] W A Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553

[15] Y B Vorobets, Ergodicity of billiards in polygons, Mat. Sb. 188 (1997) 65

Cité par Sources :