Homogeneous coordinate rings and mirror symmetry for toric varieties
Geometry & topology, Tome 10 (2006) no. 2, pp. 1097-1156.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a smooth toric variety X and an ample line bundle O(1), we construct a sequence of Lagrangian submanifolds of ()n with boundary on a level set of the Landau–Ginzburg mirror of X. The corresponding Floer homology groups form a graded algebra under the cup product which is canonically isomorphic to the homogeneous coordinate ring of X.

DOI : 10.2140/gt.2006.10.1097
Keywords: homological mirror symmetry, toric varieties, tropical geometry

Abouzaid, Mohammed 1

1 Department of Mathematics, University of Chicago, Chicago, IL 60637, USA
@article{GT_2006_10_2_a9,
     author = {Abouzaid, Mohammed},
     title = {Homogeneous coordinate rings and mirror symmetry for toric varieties},
     journal = {Geometry & topology},
     pages = {1097--1156},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2006},
     doi = {10.2140/gt.2006.10.1097},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1097/}
}
TY  - JOUR
AU  - Abouzaid, Mohammed
TI  - Homogeneous coordinate rings and mirror symmetry for toric varieties
JO  - Geometry & topology
PY  - 2006
SP  - 1097
EP  - 1156
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1097/
DO  - 10.2140/gt.2006.10.1097
ID  - GT_2006_10_2_a9
ER  - 
%0 Journal Article
%A Abouzaid, Mohammed
%T Homogeneous coordinate rings and mirror symmetry for toric varieties
%J Geometry & topology
%D 2006
%P 1097-1156
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1097/
%R 10.2140/gt.2006.10.1097
%F GT_2006_10_2_a9
Abouzaid, Mohammed. Homogeneous coordinate rings and mirror symmetry for toric varieties. Geometry & topology, Tome 10 (2006) no. 2, pp. 1097-1156. doi : 10.2140/gt.2006.10.1097. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1097/

[1] A A Beĭlinson, Coherent sheaves on $\mathbf{P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978) 68

[2] V De Silva, Products in the symplectic Floer homology of Lagrangian intersections, PhD thesis, Oxford University (1998)

[3] S K Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666

[4] M Einsiedler, M Kapranov, D Lind, Non-archimedean amoebas and tropical varieties

[5] Y Eliashberg, M Gromov, Convex symplectic manifolds, from: "Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989)", Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 135

[6] A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513

[7] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[8] K Fukaya, Y G Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96

[9] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory - anomaly and obstruction, unpublished manuscript (2000)

[10] W Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press (1993)

[11] I M Gel’Fand, M M Kapranov, A V Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory Applications, Birkhäuser (1994)

[12] M Kontsevich, Lectures at ENS Paris, Spring 1998

[13] M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)", Birkhäuser (1995) 120

[14] N C Leung, Mirror symmetry without corrections,

[15] G Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43 (2004) 1035

[16] W D Ruan, Lagrangian torus fibration of quintic Calabi–Yau hypersurfaces II: Technical results on gradient flow construction, J. Symplectic Geom. 1 (2002) 435

[17] H Rullgård, Polynomial amoebas and convexity, preprint, Stockholm University (2001)

[18] P Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000) 103

Cité par Sources :