Quadrisecants give new lower bounds for the ropelength of a knot
Geometry & topology, Tome 10 (2006) no. 1, pp. 1-26.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Using the existence of a special quadrisecant line, we show the ropelength of any nontrivial knot is at least 15.66. This improves the previously known lower bound of 12. Numerical experiments have found a trefoil with ropelength less than 16.372, so our new bounds are quite sharp.

DOI : 10.2140/gt.2006.10.1
Keywords: Knots, links, thickness of knots, ropelength of knots, quadrisecants

Denne, Elizabeth 1 ; Diao, Yuanan 2 ; Sullivan, John M 3

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA
2 Department of Mathematics, University of North Carolina, Charlotte, North Carolina 28223, USA
3 Institut für Mathematik, MA 3–2, Technische Universität Berlin, D–10623 Berlin, Germany
@article{GT_2006_10_1_a0,
     author = {Denne, Elizabeth and Diao, Yuanan and Sullivan, John M},
     title = {Quadrisecants give new lower bounds for the ropelength of a knot},
     journal = {Geometry & topology},
     pages = {1--26},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2006},
     doi = {10.2140/gt.2006.10.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1/}
}
TY  - JOUR
AU  - Denne, Elizabeth
AU  - Diao, Yuanan
AU  - Sullivan, John M
TI  - Quadrisecants give new lower bounds for the ropelength of a knot
JO  - Geometry & topology
PY  - 2006
SP  - 1
EP  - 26
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1/
DO  - 10.2140/gt.2006.10.1
ID  - GT_2006_10_1_a0
ER  - 
%0 Journal Article
%A Denne, Elizabeth
%A Diao, Yuanan
%A Sullivan, John M
%T Quadrisecants give new lower bounds for the ropelength of a knot
%J Geometry & topology
%D 2006
%P 1-26
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1/
%R 10.2140/gt.2006.10.1
%F GT_2006_10_1_a0
Denne, Elizabeth; Diao, Yuanan; Sullivan, John M. Quadrisecants give new lower bounds for the ropelength of a knot. Geometry & topology, Tome 10 (2006) no. 1, pp. 1-26. doi : 10.2140/gt.2006.10.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1/

[1] R Budney, J Conant, K P Scannell, D Sinha, New perspectives on self-linking, Adv. Math. 191 (2005) 78 | DOI

[2] J Cantarella, J Fu, R Kusner, J M Sullivan, N C Wrinkle, Criticality for the Gehring link problem,

[3] J Cantarella, G Kuperberg, R B Kusner, J M Sullivan, The second hull of a knotted curve, Amer. J. Math. 125 (2003) 1335

[4] J Cantarella, R B Kusner, J M Sullivan, On the minimum ropelength of knots and links, Invent. Math. 150 (2002) 257 | DOI

[5] E Denne, Alternating quadrisecants of knots, PhD thesis, University of Illinois at Urbana–Champaign (2004)

[6] E Denne, J M Sullivan, The distortion of a knotted curve,

[7] E Denne, J M Sullivan, Convergence and isotopy for graphs of finite total curvature, preprint (2006)

[8] Y Diao, The lower bounds of the lengths of thick knots, J. Knot Theory Ramifications 12 (2003) 1 | DOI

[9] A Dumitrescu, A Ebbers-Baumann, A Grüne, R Klein, G Rote, On the geometric dilation of closed curves, graphs and point sets,

[10] A Ebbers-Baumann, A Grüne, R Klein, Geometric dilation of closed planar curves: a new lower bound, from: "Proceedings of the 20th European Workshop on Computational Geometry (Seville 2004)"123

[11] O Gonzalez, J H Maddocks, Global curvature, thickness, and the ideal shapes of knots, Proc. Natl. Acad. Sci. USA 96 (1999) 4769 | DOI

[12] L H Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311 (1989) 697

[13] G Kuperberg, Quadrisecants of knots and links, J. Knot Theory Ramifications 3 (1994) 41 | DOI

[14] R B Kusner, J M Sullivan, On distortion and thickness of knots, from: "Topology and geometry in polymer science (Minneapolis, MN, 1996)", IMA Vol. Math. Appl. 103, Springer (1998) 67

[15] H R Morton, D M Q Mond, Closed curves with no quadrisecants, Topology 21 (1982) 235 | DOI

[16] E Pannwitz, Eine elementargeometrische Eigenschaft von Verschlingungen und Knoten, Math. Ann. 108 (1933) 629

[17] P Pierański, In search of ideal knots, from: "Ideal knots", Ser. Knots Everything 19, World Sci. Publishing (1998) 20

[18] E J Rawdon, Can computers discover ideal knots?, Experiment. Math. 12 (2003) 287

[19] J M Sullivan, Approximating ropelength by energy functions, from: "Physical knots: knotting, linking, and folding geometric objects in (Las Vegas, NV, 2001)", Contemp. Math. 304, Amer. Math. Soc. (2002) 181

Cité par Sources :