Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using the existence of a special quadrisecant line, we show the ropelength of any nontrivial knot is at least 15.66. This improves the previously known lower bound of 12. Numerical experiments have found a trefoil with ropelength less than 16.372, so our new bounds are quite sharp.
Denne, Elizabeth 1 ; Diao, Yuanan 2 ; Sullivan, John M 3
@article{GT_2006_10_1_a0, author = {Denne, Elizabeth and Diao, Yuanan and Sullivan, John M}, title = {Quadrisecants give new lower bounds for the ropelength of a knot}, journal = {Geometry & topology}, pages = {1--26}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2006}, doi = {10.2140/gt.2006.10.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1/} }
TY - JOUR AU - Denne, Elizabeth AU - Diao, Yuanan AU - Sullivan, John M TI - Quadrisecants give new lower bounds for the ropelength of a knot JO - Geometry & topology PY - 2006 SP - 1 EP - 26 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1/ DO - 10.2140/gt.2006.10.1 ID - GT_2006_10_1_a0 ER -
%0 Journal Article %A Denne, Elizabeth %A Diao, Yuanan %A Sullivan, John M %T Quadrisecants give new lower bounds for the ropelength of a knot %J Geometry & topology %D 2006 %P 1-26 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1/ %R 10.2140/gt.2006.10.1 %F GT_2006_10_1_a0
Denne, Elizabeth; Diao, Yuanan; Sullivan, John M. Quadrisecants give new lower bounds for the ropelength of a knot. Geometry & topology, Tome 10 (2006) no. 1, pp. 1-26. doi : 10.2140/gt.2006.10.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2006.10.1/
[1] New perspectives on self-linking, Adv. Math. 191 (2005) 78 | DOI
, , , ,[2] Criticality for the Gehring link problem,
, , , , ,[3] The second hull of a knotted curve, Amer. J. Math. 125 (2003) 1335
, , , ,[4] On the minimum ropelength of knots and links, Invent. Math. 150 (2002) 257 | DOI
, , ,[5] Alternating quadrisecants of knots, PhD thesis, University of Illinois at Urbana–Champaign (2004)
,[6] The distortion of a knotted curve,
, ,[7] Convergence and isotopy for graphs of finite total curvature, preprint (2006)
, ,[8] The lower bounds of the lengths of thick knots, J. Knot Theory Ramifications 12 (2003) 1 | DOI
,[9] On the geometric dilation of closed curves, graphs and point sets,
, , , , ,[10] Geometric dilation of closed planar curves: a new lower bound, from: "Proceedings of the 20th European Workshop on Computational Geometry (Seville 2004)"123
, , ,[11] Global curvature, thickness, and the ideal shapes of knots, Proc. Natl. Acad. Sci. USA 96 (1999) 4769 | DOI
, ,[12] Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311 (1989) 697
,[13] Quadrisecants of knots and links, J. Knot Theory Ramifications 3 (1994) 41 | DOI
,[14] On distortion and thickness of knots, from: "Topology and geometry in polymer science (Minneapolis, MN, 1996)", IMA Vol. Math. Appl. 103, Springer (1998) 67
, ,[15] Closed curves with no quadrisecants, Topology 21 (1982) 235 | DOI
, ,[16] Eine elementargeometrische Eigenschaft von Verschlingungen und Knoten, Math. Ann. 108 (1933) 629
,[17] In search of ideal knots, from: "Ideal knots", Ser. Knots Everything 19, World Sci. Publishing (1998) 20
,[18] Can computers discover ideal knots?, Experiment. Math. 12 (2003) 287
,[19] Approximating ropelength by energy functions, from: "Physical knots: knotting, linking, and folding geometric objects in (Las Vegas, NV, 2001)", Contemp. Math. 304, Amer. Math. Soc. (2002) 181
,Cité par Sources :