On the Ozsvath-Szabo invariant of negative definite plumbed 3-manifolds
Geometry & topology, Tome 9 (2005) no. 2, pp. 991-1042.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The main goal of the present article is the computation of the Heegaard Floer homology introduced by Ozsváth and Szabó for a family of plumbed rational homology 3–spheres. The main motivation is the study of the Seiberg–Witten type invariants of links of normal surface singularities.

DOI : 10.2140/gt.2005.9.991
Keywords: 3–manifolds, Ozsváth–Szabó Heegaard Floer homology, Seiberg–Witten invariants, Seifert manifolds, Lens spaces, Casson–Walker invariant, $\mathbb{Q}$–homology spheres, Reidemeister–Turaev torsion, normal surface singularities, rational singularities, elliptic singularities

Némethi, András 1

1 Department of Mathematics, Ohio State University, Columbus, Ohio 43210, USA
@article{GT_2005_9_2_a7,
     author = {N\'emethi, Andr\'as},
     title = {On the {Ozsvath-Szabo} invariant of negative definite plumbed 3-manifolds},
     journal = {Geometry & topology},
     pages = {991--1042},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2005},
     doi = {10.2140/gt.2005.9.991},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.991/}
}
TY  - JOUR
AU  - Némethi, András
TI  - On the Ozsvath-Szabo invariant of negative definite plumbed 3-manifolds
JO  - Geometry & topology
PY  - 2005
SP  - 991
EP  - 1042
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.991/
DO  - 10.2140/gt.2005.9.991
ID  - GT_2005_9_2_a7
ER  - 
%0 Journal Article
%A Némethi, András
%T On the Ozsvath-Szabo invariant of negative definite plumbed 3-manifolds
%J Geometry & topology
%D 2005
%P 991-1042
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.991/
%R 10.2140/gt.2005.9.991
%F GT_2005_9_2_a7
Némethi, András. On the Ozsvath-Szabo invariant of negative definite plumbed 3-manifolds. Geometry & topology, Tome 9 (2005) no. 2, pp. 991-1042. doi : 10.2140/gt.2005.9.991. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.991/

[1] M Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962) 485

[2] M Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966) 129

[3] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)

[4] H Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331

[5] H B Laufer, On rational singularities, Amer. J. Math. 94 (1972) 597

[6] H B Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977) 1257

[7] C Lescop, Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)

[8] I Luengo-Velasco, A Melle-Hernández, A Némethi, Links and analytic invariants of superisolated singularities, J. Algebraic Geom. 14 (2005) 543

[9] A Némethi, “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999) 145

[10] A Némethi, Five lectures on normal surface singularities, from: "Low dimensional topology (Eger, 1996/Budapest, 1998)", Bolyai Soc. Math. Stud. 8, János Bolyai Math. Soc. (1999) 269

[11] A Némethi, Line bundles associated with normal surface singularities

[12] A Némethi, L I Nicolaescu, Seiberg–Witten invariants and surface singularities, Geom. Topol. 6 (2002) 269

[13] A Némethi, L I Nicolaescu, Seiberg–Witten invariants and surface singularities II: Singularities with good $\mathbb C^*$–action, J. London Math. Soc. $(2)$ 69 (2004) 593

[14] W D Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299

[15] W D Neumann, Abelian covers of quasihomogeneous surface singularities, from: "Singularities, Part 2 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 233

[16] L I Nicolaescu, Seiberg–Witten invariants of rational homology 3–spheres, Commun. Contemp. Math. 6 (2004) 833

[17] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[18] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[19] P Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1

[20] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[21] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185

[22] H Pinkham, Normal surface singularities with $C^*$ action, Math. Ann. 227 (1977) 183

[23] J Stevens, Elliptic surface singularities and smoothings of curves, Math. Ann. 267 (1984) 239

[24] V Turaev, Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679

Cité par Sources :