Distances of Heegaard splittings
Geometry & topology, Tome 9 (2005) no. 1, pp. 95-119.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

J Hempel showed that the set of distances of the Heegaard splittings (S,V,hn(V)) is unbounded, as long as the stable and unstable laminations of h avoid the closure of VP(S). Here h is a pseudo-Anosov homeomorphism of a surface S while V is the set of isotopy classes of simple closed curves in S bounding essential disks in a fixed handlebody.

With the same hypothesis we show the distance of the splitting (S,V,hn(V)) grows linearly with n, answering a question of A Casson. In addition we prove the converse of Hempel’s theorem. Our method is to study the action of h on the curve complex associated to S. We rely heavily on the result, due to H Masur and Y Minsky, that the curve complex is Gromov hyperbolic.

DOI : 10.2140/gt.2005.9.95
Keywords: curve complex, Gromov hyperbolicity, Heegaard splitting

Abrams, Aaron 1 ; Schleimer, Saul 2

1 Department of Mathematics, Emory University, Atlanta, Georgia 30322, USA
2 Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854, USA
@article{GT_2005_9_1_a1,
     author = {Abrams, Aaron and Schleimer, Saul},
     title = {Distances of {Heegaard} splittings},
     journal = {Geometry & topology},
     pages = {95--119},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.95},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.95/}
}
TY  - JOUR
AU  - Abrams, Aaron
AU  - Schleimer, Saul
TI  - Distances of Heegaard splittings
JO  - Geometry & topology
PY  - 2005
SP  - 95
EP  - 119
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.95/
DO  - 10.2140/gt.2005.9.95
ID  - GT_2005_9_1_a1
ER  - 
%0 Journal Article
%A Abrams, Aaron
%A Schleimer, Saul
%T Distances of Heegaard splittings
%J Geometry & topology
%D 2005
%P 95-119
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.95/
%R 10.2140/gt.2005.9.95
%F GT_2005_9_1_a1
Abrams, Aaron; Schleimer, Saul. Distances of Heegaard splittings. Geometry & topology, Tome 9 (2005) no. 1, pp. 95-119. doi : 10.2140/gt.2005.9.95. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.95/

[1] B H Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281

[2] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)

[3] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275

[4] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer (1990)

[5] A Fathi, F Laudenbach, V Poénaru, Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284

[6] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[7] U Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, from: "Spaces of Kleinian groups", London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187

[8] J Hempel, 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631

[9] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)

[10] E Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, preprint (1999)

[11] T Kobayashi, Heights of simple loops and pseudo–Anosov homeomorphisms, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 327

[12] H Masur, Measured foliations and handlebodies, Ergodic Theory Dynam. Systems 6 (1986) 99

[13] H A Masur, Y N Minsky, Quasiconvexity in the curve complex, from: "In the tradition of Ahlfors and Bers, III", Contemp. Math. 355, Amer. Math. Soc. (2004) 309

[14] H A Masur, Y N Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103

[15] Y N Minsky, Combinatorial and geometrical aspects of hyperbolic 3–manifolds, from: "Kleinian groups and hyperbolic 3–manifolds (Warwick, 2001)", London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press (2003) 3

[16] K J Shackleton, Tightness and computing distances in the curve complex

Cité par Sources :