Symplectomorphism groups and isotropic skeletons
Geometry & topology, Tome 9 (2005) no. 2, pp. 935-970.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The symplectomorphism group of a 2–dimensional surface is homotopy equivalent to the orbit of a filling system of curves. We give a generalization of this statement to dimension 4. The filling system of curves is replaced by a decomposition of the symplectic 4–manifold (M,ω) into a disjoint union of an isotropic 2–complex L and a disc bundle over a symplectic surface Σ which is Poincare dual to a multiple of the form ω. We show that then one can recover the homotopy type of the symplectomorphism group of M from the orbit of the pair (L,Σ). This allows us to compute the homotopy type of certain spaces of Lagrangian submanifolds, for example the space of Lagrangian 2 2 isotopic to the standard one.

DOI : 10.2140/gt.2005.9.935
Keywords: Lagrangian, symplectomorphism, homotopy

Coffey, Joseph 1

1 Courant Institute for the Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
@article{GT_2005_9_2_a5,
     author = {Coffey, Joseph},
     title = {Symplectomorphism groups and isotropic skeletons},
     journal = {Geometry & topology},
     pages = {935--970},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2005},
     doi = {10.2140/gt.2005.9.935},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.935/}
}
TY  - JOUR
AU  - Coffey, Joseph
TI  - Symplectomorphism groups and isotropic skeletons
JO  - Geometry & topology
PY  - 2005
SP  - 935
EP  - 970
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.935/
DO  - 10.2140/gt.2005.9.935
ID  - GT_2005_9_2_a5
ER  - 
%0 Journal Article
%A Coffey, Joseph
%T Symplectomorphism groups and isotropic skeletons
%J Geometry & topology
%D 2005
%P 935-970
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.935/
%R 10.2140/gt.2005.9.935
%F GT_2005_9_2_a5
Coffey, Joseph. Symplectomorphism groups and isotropic skeletons. Geometry & topology, Tome 9 (2005) no. 2, pp. 935-970. doi : 10.2140/gt.2005.9.935. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.935/

[1] M Abreu, Topology of symplectomorphism groups of $S^2{\times}S^2$, Invent. Math. 131 (1998) 1

[2] M Abreu, D Mcduff, Topology of symplectomorphism groups of rational ruled surfaces, J. Amer. Math. Soc. 13 (2000) 971

[3] P Biran, Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001) 407

[4] J Coffey, A symplectic Alexander trick and spaces of symplectic sections (2003)

[5] S K Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666

[6] Y Eliashberg, L Polterovich, Local Lagrangian 2–knots are trivial, Ann. of Math. $(2)$ 144 (1996) 61

[7] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[8] R Hind, Lagrangian spheres in $S^2{\times}S^2$, Geom. Funct. Anal. 14 (2004) 303

[9] F Lalonde, D Mcduff, The classification of ruled symplectic 4–manifolds, Math. Res. Lett. 3 (1996) 769

[10] E Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995) 247

[11] J P May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press (1992)

[12] D Mcduff, The structure of rational and ruled symplectic 4–manifolds, J. Amer. Math. Soc. 3 (1990) 679

[13] D Mcduff, Symplectomorphism groups and almost complex structures, from: "Essays on geometry and related topics, Vol. 1, 2", Monogr. Enseign. Math. 38, Enseignement Math. (2001) 527

[14] E H Spanier, Algebraic topology, Springer (1981)

[15] W P Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467

Cité par Sources :