Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We describe a cooperad structure on the simplicial bar construction on a reduced operad of based spaces or spectra and, dually, an operad structure on the cobar construction on a cooperad. We also show that if the homology of the original operad (respectively, cooperad) is Koszul, then the homology of the bar (respectively, cobar) construction is the Koszul dual. We use our results to construct an operad structure on the partition poset models for the Goodwillie derivatives of the identity functor on based spaces and show that this induces the ‘Lie’ operad structure on the homology groups of these derivatives. We also extend the bar construction to modules over operads (and, dually, to comodules over cooperads) and show that a based space naturally gives rise to a left module over the operad formed by the derivatives of the identity.
Ching, Michael 1
@article{GT_2005_9_2_a4, author = {Ching, Michael}, title = {Bar constructions for topological operads and the {Goodwillie} derivatives of the identity}, journal = {Geometry & topology}, pages = {833--934}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2005}, doi = {10.2140/gt.2005.9.833}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.833/} }
TY - JOUR AU - Ching, Michael TI - Bar constructions for topological operads and the Goodwillie derivatives of the identity JO - Geometry & topology PY - 2005 SP - 833 EP - 934 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.833/ DO - 10.2140/gt.2005.9.833 ID - GT_2005_9_2_a4 ER -
Ching, Michael. Bar constructions for topological operads and the Goodwillie derivatives of the identity. Geometry & topology, Tome 9 (2005) no. 2, pp. 833-934. doi : 10.2140/gt.2005.9.833. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.833/
[1] The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999) 743
, ,[2] Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003) 805
, ,[3] Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications 51, Cambridge University Press (1994)
,[4] Arboreal objects and operads, in preparation
,[5] A note on the composition product of symmetric sequences
,[6] Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, American Mathematical Society (1997)
, , , ,[7] Koszul duality of operads and homology of partition posets, from: "Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$–theory", Contemp. Math. 346, Amer. Math. Soc. (2004) 115
,[8] Operads, homotopy algebra and iterated integrals for double loop spaces
, ,[9] Koszul duality for operads, Duke Math. J. 76 (1994) 203
, ,[10] Calculus I: The first derivative of pseudoisotopy theory, $K$–Theory 4 (1990) 1
,[11] Calculus II: Analytic functors, $K$–Theory 5 (1991/92) 295
,[12] Calculus III: Taylor series, Geom. Topol. 7 (2003) 645
,[13] Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999)
,[14] Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer (1986)
, , , ,[15] Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1998)
,[16] Operads in algebra, topology and physics, Mathematical Surveys and Monographs 96, American Mathematical Society (2002)
, , ,[17] Configuration operads, minimal models and rational curves, DPhil thesis, University of Oxford (1998)
,[18] Homology of generalized partition posets (2004)
,[19] Cofibrant operads and universal $E_\infty$ operads, Topology Appl. 133 (2003) 69
,Cité par Sources :