An exotic smooth structure on CP²#6CP²
Geometry & topology, Tome 9 (2005) no. 2, pp. 813-832.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct smooth 4–manifolds homeomorphic but not diffeomorphic to 2#6¯2.

DOI : 10.2140/gt.2005.9.813
Keywords: exotic smooth 4–manifolds, Seiberg–Witten invariants, rational blow-down, rational surfaces

Stipsicz, András I 1 ; Szabó, Zoltán 2

1 Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda utca 13–15, Hungary, Institute for Advanced Study, Princeton, New Jersey 08540, USA
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
@article{GT_2005_9_2_a3,
     author = {Stipsicz, Andr\'as I and Szab\'o, Zolt\'an},
     title = {An exotic smooth structure on {CP{\texttwosuperior}#6CP{\texttwosuperior}}},
     journal = {Geometry & topology},
     pages = {813--832},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2005},
     doi = {10.2140/gt.2005.9.813},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.813/}
}
TY  - JOUR
AU  - Stipsicz, András I
AU  - Szabó, Zoltán
TI  - An exotic smooth structure on CP²#6CP²
JO  - Geometry & topology
PY  - 2005
SP  - 813
EP  - 832
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.813/
DO  - 10.2140/gt.2005.9.813
ID  - GT_2005_9_2_a3
ER  - 
%0 Journal Article
%A Stipsicz, András I
%A Szabó, Zoltán
%T An exotic smooth structure on CP²#6CP²
%J Geometry & topology
%D 2005
%P 813-832
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.813/
%R 10.2140/gt.2005.9.813
%F GT_2005_9_2_a3
Stipsicz, András I; Szabó, Zoltán. An exotic smooth structure on CP²#6CP². Geometry & topology, Tome 9 (2005) no. 2, pp. 813-832. doi : 10.2140/gt.2005.9.813. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.813/

[1] A J Casson, J L Harer, Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981) 23

[2] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[3] S K Donaldson, Irrationality and the $h$–cobordism conjecture, J. Differential Geom. 26 (1987) 141

[4] R Fintushel, R J Stern, Rational blowdowns of smooth 4–manifolds, J. Differential Geom. 46 (1997) 181

[5] R Fintushel, R J Stern, Immersed spheres in 4–manifolds and the immersed Thom conjecture, Turkish J. Math. 19 (1995) 145

[6] R Fintushel, R J Stern, Surgery on nullhomologous tori and simply connected 4–manifolds with $b^+=1$, J. Topol. 1 (2008) 1

[7] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[8] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)

[9] J Harer, A Kas, R Kirby, Handlebody decompositions of complex surfaces, Mem. Amer. Math. Soc. 62 (1986)

[10] K Kodaira, On compact analytic surfaces II, Ann. of Math. $(2)$ 77 (1963) 563

[11] J Kollár, N I Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988) 299

[12] D Kotschick, On manifolds homeomorphic to $\mathbb{C}\mathrm{P}^2\# 8\overline{\mathbf{C}\mathrm{P}}{}^2$, Invent. Math. 95 (1989) 591

[13] T J Li, A Liu, Symplectic structure on ruled surfaces and a generalized adjunction formula, Math. Res. Lett. 2 (1995) 453

[14] P Ozsváth, Z Szabó, The symplectic Thom conjecture, Ann. of Math. $(2)$ 151 (2000) 93

[15] P Ozsváth, Z Szabó, On Park's exotic smooth four-manifolds, from: "Geometry and topology of manifolds", Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 253

[16] J Park, Seiberg–Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997) 363

[17] J Park, Simply connected symplectic 4–manifolds with $b^+_2=1$ and $c^2_1=2$, Invent. Math. 159 (2005) 657

[18] J Park, A I Stipsicz, Z Szabó, Exotic smooth structures on $\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2$, Math. Res. Lett. 12 (2005) 701

[19] M Symington, Generalized symplectic rational blowdowns, Algebr. Geom. Topol. 1 (2001) 503

[20] C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809

[21] C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845

[22] C H Taubes, $\mathrm{GR}=\mathrm{SW}$: counting curves and connections, J. Differential Geom. 52 (1999) 453

Cité par Sources :