Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
While the topological types of normal surface singularities with homology sphere link have been classified, forming a rich class, until recently little was known about the possible analytic structures. We proved in a previous paper that many of them can be realized as complete intersection singularities of “splice type,” generalizing Brieskorn type. We show that a normal singularity with homology sphere link is of splice type if and only if some naturally occurring knots in the singularity link are themselves links of hypersurface sections of the singular point. The Casson Invariant Conjecture (CIC) asserts that for a complete intersection surface singularity whose link is an integral homology sphere, the Casson invariant of that link is one-eighth the signature of the Milnor fiber. In this paper we prove CIC for a large class of splice type singularities. The CIC suggests (and is motivated by the idea) that the Milnor fiber of a complete intersection singularity with homology sphere link should be a 4–manifold canonically associated to . We propose, and verify in a non-trivial case, a stronger conjecture than the CIC for splice type complete intersections: a precise topological description of the Milnor fiber. We also point out recent counterexamples to some overly optimistic earlier conjectures.
Neumann, Walter D 1 ; Wahl, Jonathan 2
@article{GT_2005_9_2_a2, author = {Neumann, Walter D and Wahl, Jonathan}, title = {Complex surface singularities with integral homology sphere links}, journal = {Geometry & topology}, pages = {757--811}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2005}, doi = {10.2140/gt.2005.9.757}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.757/} }
TY - JOUR AU - Neumann, Walter D AU - Wahl, Jonathan TI - Complex surface singularities with integral homology sphere links JO - Geometry & topology PY - 2005 SP - 757 EP - 811 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.757/ DO - 10.2140/gt.2005.9.757 ID - GT_2005_9_2_a2 ER -
Neumann, Walter D; Wahl, Jonathan. Complex surface singularities with integral homology sphere links. Geometry & topology, Tome 9 (2005) no. 2, pp. 757-811. doi : 10.2140/gt.2005.9.757. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.757/
[1] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer (1984)
, , ,[2] The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (1980) 241
, ,[3] Introduction to algebraic plane curve singularities, in preparation
, ,[4] Equivariant Casson invariant for knots and the Neumann–Wahl formula, Osaka J. Math. 37 (2000) 57
,[5] Equivariant Casson invariants via gauge theory, J. Reine Angew. Math. 541 (2001) 143
, ,[6] Sous-monoïdes d'intersection complète de $N.$, Ann. Sci. École Norm. Sup. $(4)$ 9 (1976) 145
,[7] Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies 110, Princeton University Press (1985)
, ,[8] Improvement of Grauert–Riemenschneider's theorem for a normal surface, Ann. Inst. Fourier (Grenoble) 32 (1982)
,[9] Exotische Sphären als Umgebungsränder in speziellen komplexen Räumen, Math. Ann. 197 (1972) 44
,[10] Generators and relations of abelian semigroups and semigroup rings., Manuscripta Math. 3 (1970) 175
,[11] Die Wertehalbgruppe eines lokalen Rings der Dimension 1, S.-B. Heidelberger Akad. Wiss. Math. Natur. Kl. (1971) 27
, ,[12] Products of knots, branched fibrations and sums of singularities, Topology 16 (1977) 369
, ,[13] On generalized Weierstrass points and rings with no prime elements, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 391
,[14] The equivalence of Seiberg–Witten and Casson invariants for homology 3–spheres, Math. Res. Lett. 6 (1999) 631
,[15] Invariant de Casson–Walker des sphères d'homologie rationnelle fibrées de Seifert, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990) 727
,[16] Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)
,[17] Links and analytic invariants of superisolated singularities, J. Algebraic Geom. 14 (2005) 543
, , ,[18] Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton University Press (1968)
,[19] “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999) 145
,[20] The link of $f(x,y)+z^n=0$ and Zariski's conjecture, Compos. Math. 141 (2005) 502
, ,[21] Seiberg–Witten invariants and surface singularities, Geom. Topol. 6 (2002) 269
, ,[22] Seiberg–Witten invariants and surface singularities II: Singularities with good $\mathbb C^*$–action, J. London Math. Soc. $(2)$ 69 (2004) 593
, ,[23] Seiberg–Witten invariants and surface singularities III: splicings and cyclic covers, Selecta Math. $($N.S.$)$ 11 (2005) 399
, ,[24] Cyclic suspension of knots and periodicity of signature for singularities, Bull. Amer. Math. Soc. 80 (1974) 977
,[25] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299
,[26] Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990) 58
, ,[27] Seifert manifolds, plumbing, $\mu $–invariant and orientation reversing maps, from: "Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977)", Lecture Notes in Math. 664, Springer (1978) 163
, ,[28] Universal abelian covers of surface singularities, from: "Trends in singularities", Trends Math., Birkhäuser (2002) 181
, ,[29] Universal abelian covers of quotient-cusps, Math. Ann. 326 (2003) 75
, ,[30] Complete intersection singularities of splice type as universal abelian covers, Geom. Topol. 9 (2005) 699
, ,[31] On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3–spheres, from: "Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979)", Lecture Notes in Math. 788, Springer (1980) 172
,[32] Introduction to curve singularities, from: "Singularity theory (Trieste, 1991)", World Sci. Publ., River Edge, NJ (1995) 866
,[33] Filtered rings, filtered blowing-ups and normal two-dimensional singularities with “star-shaped” resolution, Publ. Res. Inst. Math. Sci. 25 (1989) 681
, ,[34] Smoothings of normal surface singularities, Topology 20 (1981) 219
,[35] Some examples of one dimensional Gorenstein domains, Nagoya Math. J. 49 (1973) 101
,[36] Le problème des modules pour les branches planes, École Polytechnique (1973)
,Cité par Sources :