Counting rational curves of arbitrary shape in projective spaces
Geometry & topology, Tome 9 (2005) no. 2, pp. 571-697.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We present an approach to a large class of enumerative problems concerning rational curves in projective spaces. This approach uses analysis to obtain topological information about moduli spaces of stable maps. We demonstrate it by enumerating one-component rational curves with a triple point or a tacnodal point in the three-dimensional projective space and with a cusp in any projective space.

DOI : 10.2140/gt.2005.9.571
Keywords: enumerative geometry, projective spaces, rational curves

Zinger, Aleksey 1

1 Department of Mathematics, Stanford University, Stanford, California 94305-2125, USA
@article{GT_2005_9_2_a0,
     author = {Zinger, Aleksey},
     title = {Counting rational curves of arbitrary shape in projective spaces},
     journal = {Geometry & topology},
     pages = {571--697},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2005},
     doi = {10.2140/gt.2005.9.571},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.571/}
}
TY  - JOUR
AU  - Zinger, Aleksey
TI  - Counting rational curves of arbitrary shape in projective spaces
JO  - Geometry & topology
PY  - 2005
SP  - 571
EP  - 697
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.571/
DO  - 10.2140/gt.2005.9.571
ID  - GT_2005_9_2_a0
ER  - 
%0 Journal Article
%A Zinger, Aleksey
%T Counting rational curves of arbitrary shape in projective spaces
%J Geometry & topology
%D 2005
%P 571-697
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.571/
%R 10.2140/gt.2005.9.571
%F GT_2005_9_2_a0
Zinger, Aleksey. Counting rational curves of arbitrary shape in projective spaces. Geometry & topology, Tome 9 (2005) no. 2, pp. 571-697. doi : 10.2140/gt.2005.9.571. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.571/

[1] R Bott, L W Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer (1982)

[2] S Diaz, J Harris, Geometry of the Severi variety, Trans. Amer. Math. Soc. 309 (1988) 1

[3] W Fulton, R Pandharipande, Notes on stable maps and quantum cohomology, from: "Algebraic geometry—Santa Cruz 1995", Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45

[4] P Griffiths, J Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley Sons (1994)

[5] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[6] S Katz, Z Qin, Y Ruan, Enumeration of nodal genus-2 plane curves with fixed complex structure, J. Algebraic Geom. 7 (1998) 569

[7] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525

[8] M Kontsevich, Enumeration of rational curves via torus actions, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 335

[9] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic 4–manifolds (Irvine, CA, 1996)", First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA (1998) 47

[10] D Mcduff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)

[11] R Pandharipande, Intersections of $\mathbb{Q}$–divisors on Kontsevich's moduli space ${M}_{0,n}(\mathbb{P}^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999) 1481

[12] Z Ran, On the quantum cohomology of the plane, old and new, and a $K3$ analogue, Collect. Math. 49 (1998) 519

[13] Z Ran, Enumerative geometry of divisorial families of rational curves, Ann. Sc. Norm. Super. Pisa Cl. Sci. $(5)$ 3 (2004) 67

[14] Y Ruan, G Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259

[15] R Vakil, Enumerative geometry of plane curves of low genus

[16] H Zeuthen, Almindelige Egenskaber ved Systemer af Plane Kurver, Kongelige Danske Videnskabernes Selskabs Skrifter 10 (1873) 285

[17] A Zinger, Enumeration of genus-two curves with a fixed complex structure in $\mathbb{P}^2$ and $\mathbb{P}^3$, J. Differential Geom. 65 (2003) 341

[18] A Zinger, Enumerative vs. symplectic invariants and obstruction bundles, J. Symplectic Geom. 2 (2004) 445

[19] A Zinger, Enumeration of genus-three plane curves with a fixed complex structure, J. Algebraic Geom. 14 (2005) 35

[20] A Zinger, Enumeration of one-nodal rational curves in projective spaces, Topology 43 (2004) 793

Cité par Sources :