Classical and quantum dilogarithmic invariants of flat PSL(2, ℂ)–bundles over 3–manifolds
Geometry & topology, Tome 9 (2005) no. 1, pp. 493-569.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a family of matrix dilogarithms, which are automorphisms of N N, N being any odd positive integer, associated to hyperbolic ideal tetrahedra equipped with an additional decoration. The matrix dilogarithms satisfy fundamental five-term identities that correspond to decorated versions of the 2 3 move on 3–dimensional triangulations. Together with the decoration, they arise from the solution we give of a symmetrization problem for a specific family of basic matrix dilogarithms, the classical (N = 1) one being the Rogers dilogarithm, which only satisfy one special instance of five-term identity. We use the matrix dilogarithms to construct invariant state sums for closed oriented 3–manifolds W endowed with a flat principal PSL(2, )–bundle ρ, and a fixed non empty link L if N > 1, and for (possibly “marked”) cusped hyperbolic 3–manifolds M. When N = 1 the state sums recover known simplicial formulas for the volume and the Chern–Simons invariant. When N > 1, the invariants for M are new; those for triples (W,L,ρ) coincide with the quantum hyperbolic invariants defined by the first author, though our present approach clarifies substantially their nature. We analyse the structural coincidences versus discrepancies between the cases N = 1 and N > 1, and we formulate “Volume Conjectures”, having geometric motivations, about the asymptotic behaviour of the invariants when N .

DOI : 10.2140/gt.2005.9.493
Keywords: dilogarithms, state sum invariants, quantum field theory, Cheeger–Chern–Simons invariants, scissors congruences, hyperbolic 3–manifolds.

Baseilhac, Stephane 1 ; Benedetti, Riccardo 2

1 Université de Grenoble I, Institut Joseph Fourier, UMR CNRS 5582, 100 rue des Maths, BP 74, F-38402 Saint-Martin-d’Hères Cedex, France
2 Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti, 2, I-56127 Pisa, Italy
@article{GT_2005_9_1_a14,
     author = {Baseilhac, Stephane and Benedetti, Riccardo},
     title = {Classical and quantum dilogarithmic invariants of flat {PSL(2,} {\ensuremath{\mathbb{C}}){\textendash}bundles} over 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {493--569},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.493},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.493/}
}
TY  - JOUR
AU  - Baseilhac, Stephane
AU  - Benedetti, Riccardo
TI  - Classical and quantum dilogarithmic invariants of flat PSL(2, ℂ)–bundles over 3–manifolds
JO  - Geometry & topology
PY  - 2005
SP  - 493
EP  - 569
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.493/
DO  - 10.2140/gt.2005.9.493
ID  - GT_2005_9_1_a14
ER  - 
%0 Journal Article
%A Baseilhac, Stephane
%A Benedetti, Riccardo
%T Classical and quantum dilogarithmic invariants of flat PSL(2, ℂ)–bundles over 3–manifolds
%J Geometry & topology
%D 2005
%P 493-569
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.493/
%R 10.2140/gt.2005.9.493
%F GT_2005_9_1_a14
Baseilhac, Stephane; Benedetti, Riccardo. Classical and quantum dilogarithmic invariants of flat PSL(2, ℂ)–bundles over 3–manifolds. Geometry & topology, Tome 9 (2005) no. 1, pp. 493-569. doi : 10.2140/gt.2005.9.493. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.493/

[1] S Baseilhac, Dilogarithme Quantique et Invariants de 3–Variétés, PhD thesis, Université Paul Sabatier, Toulouse (2001)

[2] S Baseilhac, R Benedetti, QHI, 3–manifolds scissors congruence classes and the volume conjecture, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 13

[3] S Baseilhac, R Benedetti, Quantum hyperbolic invariants of 3–manifolds with $\mathrm{PSL}(2,\mathbb{C})$–characters, Topology 43 (2004) 1373

[4] S Baseilhac, R Benedetti, 3D quantum hyperbolic field theory

[5] R Benedetti, C Petronio, Lectures on hyperbolic geometry, Universitext, Springer (1992)

[6] R Benedetti, C Petronio, Branched standard spines of 3–manifolds, Lecture Notes in Mathematics 1653, Springer (1997)

[7] V V Bazhanov, N Y Reshetikhin, Remarks on the quantum dilogarithm, J. Phys. A 28 (1995) 2217

[8] S Baaj, G Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de $C^*$–algèbres, Ann. Sci. École Norm. Sup. $(4)$ 26 (1993) 425

[9] B G Casler, An imbedding theorem for connected 3–manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965) 559

[10] F Costantino, A calculus for branched spines of 3–manifolds, Math. Z. 251 (2005) 427

[11] V Chari, A Pressley, A guide to quantum groups, Cambridge University Press (1994)

[12] A A Davydov, Pentagon equation and matrix bialgebras, Comm. Algebra 29 (2001) 2627

[13] N M Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999) 623

[14] J L Dupont, C H Sah, Scissors congruences II, J. Pure Appl. Algebra 25 (1982) 159

[15] J L Dupont, The dilogarithm as a characteristic class for flat bundles, from: "Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985)" (1987) 137

[16] J L Dupont, Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics 1, World Scientific Publishing Co. (2001)

[17] D B A Epstein, R C Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67

[18] L D Faddeev, R M Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994) 427

[19] S Francaviglia, Hyperbolic volume of representations of fundamental groups of cusped 3–manifolds, Int. Math. Res. Not. (2004) 425

[20] R M Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995) 1409

[21] R M Kashaev, The algebraic nature of quantum dilogarithm, from: "Geometry and integrable models (Dubna, 1994)", World Sci. Publ., River Edge, NJ (1996) 32

[22] R M Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269

[23] C Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer (1995)

[24] L Lewin, Dilogarithms and associated functions, Foreword by J. C. P. Miller, Macdonald, London (1958)

[25] S V Matveev, Transformations of special spines, and the Zeeman conjecture, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987) 1104, 1119

[26] R Meyerhoff, Hyperbolic 3–manifolds with equal volumes but different Chern–Simons invariants, from: "Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press (1986) 209

[27] H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85

[28] W D Neumann, Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic 3–manifolds, from: "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 243

[29] W D Neumann, Hilbert's 3rd problem and invariants of 3–manifolds, from: "The Epstein birthday schrift", Geom. Topol. Monogr. 1, Geom. Topol. Publ., Coventry (1998) 383

[30] W D Neumann, Extended Bloch group and the Chern–Simons class, incomplete working version

[31] W D Neumann, Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413

[32] W D Neumann, J Yang, Bloch invariants of hyperbolic 3–manifolds, Duke Math. J. 96 (1999) 29

[33] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307

[34] T Ohtsuki, T Kohno, T Le, J Murakami, J Roberts, V Turaev, Invariants of knots and 3–manifolds, Geometry Topology Monographs 4, Geometry Topology Publications, Coventry (2002)

[35] R Piergallini, Standard moves for standard polyhedra and spines, Rend. Circ. Mat. Palermo $(2)$ Suppl. (1988) 391

[36] M A Semenov-Tian-Shansky, Poisson Lie groups, quantum duality principle, and the quantum double, from: "Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992)", Contemp. Math. 175, Amer. Math. Soc. (1994) 219

[37] V G Turaev, Quantum invariants of knots and 3–manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter Co. (1994)

[38] D Zagier, The remarkable dilogarithm, J. Math. Phys. Sci. 22 (1988) 131

Cité par Sources :