Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane
Geometry & topology, Tome 9 (2005) no. 1, pp. 483-491.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the growth of the genus zero Gromov–Witten invariants GWnD of the projective plane Pk2 blown up at k points (where D is a class in the second homology group of Pk2). We prove that, under some natural restrictions on D, the sequence logGWnD is equivalent to λnlogn, where λ = D c1(Pk2).

DOI : 10.2140/gt.2005.9.483
Keywords: Gromov–Witten invariants, rational, ruled algebraic surfaces, rational, ruled symplectic 4–manifolds, tropical enumerative geometry

Itenberg, Ilia 1 ; Kharlamov, Viatcheslav 1 ; Shustin, Eugenii 2

1 Université Louis Pasteur et IRMA, 7, rue René Descartes, 67084 Strasbourg Cedex, France
2 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
@article{GT_2005_9_1_a13,
     author = {Itenberg, Ilia and Kharlamov, Viatcheslav and Shustin, Eugenii},
     title = {Logarithmic asymptotics of the genus zero {Gromov{\textendash}Witten} invariants of the blown up plane},
     journal = {Geometry & topology},
     pages = {483--491},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.483},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.483/}
}
TY  - JOUR
AU  - Itenberg, Ilia
AU  - Kharlamov, Viatcheslav
AU  - Shustin, Eugenii
TI  - Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane
JO  - Geometry & topology
PY  - 2005
SP  - 483
EP  - 491
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.483/
DO  - 10.2140/gt.2005.9.483
ID  - GT_2005_9_1_a13
ER  - 
%0 Journal Article
%A Itenberg, Ilia
%A Kharlamov, Viatcheslav
%A Shustin, Eugenii
%T Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane
%J Geometry & topology
%D 2005
%P 483-491
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.483/
%R 10.2140/gt.2005.9.483
%F GT_2005_9_1_a13
Itenberg, Ilia; Kharlamov, Viatcheslav; Shustin, Eugenii. Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane. Geometry & topology, Tome 9 (2005) no. 1, pp. 483-491. doi : 10.2140/gt.2005.9.483. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.483/

[1] P Di Francesco, C Itzykson, Quantum intersection rings, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 81

[2] L Göttsche, R Pandharipande, The quantum cohomology of blow-ups of $\mathbb{P}^2$ and enumerative geometry, J. Differential Geom. 48 (1998) 61

[3] G M Greuel, U Karras, Families of varieties with prescribed singularities, Compositio Math. 69 (1989) 83

[4] G M Greuel, C Lossen, E Shustin, Geometry of families of nodal curves on the blown-up projective plane, Trans. Amer. Math. Soc. 350 (1998) 251

[5] I V Itenberg, V M Kharlamov, E I Shustin, Logarithmic equivalence of the Welschinger and the Gromov–Witten invariants, Uspekhi Mat. Nauk 59 (2004) 85

[6] S M Ivashkovich, V V Shevchishin, Deformations of noncompact complex curves, and envelopes of meromorphy of spheres, Mat. Sb. 189 (1998) 23

[7] H Hofer, V Lizan, J C Sikorav, On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997) 149

[8] J Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer (1996)

[9] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525

[10] D Mcduff, Immersed spheres in symplectic 4–manifolds, Ann. Inst. Fourier (Grenoble) 42 (1992) 369

[11] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)

[12] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004)

[13] G Mikhalkin, Counting curves via lattice paths in polygons, C. R. Math. Acad. Sci. Paris 336 (2003) 629

[14] G Mikhalkin, Enumerative tropical algebraic geometry in $\mathbb R^2$, J. Amer. Math. Soc. 18 (2005) 313

[15] A Nobile, On specializations of curves I, Trans. Amer. Math. Soc. 282 (1984) 739

[16] E Shustin, A tropical approach to enumerative geometry, Algebra i Analiz 17 (2005) 170

[17] J Y Welschinger, Invariants of real rational symplectic 4–manifolds and lower bounds in real enumerative geometry, C. R. Math. Acad. Sci. Paris 336 (2003) 341

[18] J Y Welschinger, Invariants of real symplectic 4–manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005) 195

Cité par Sources :