Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the growth of the genus zero Gromov–Witten invariants of the projective plane blown up at points (where is a class in the second homology group of ). We prove that, under some natural restrictions on , the sequence is equivalent to , where .
Itenberg, Ilia 1 ; Kharlamov, Viatcheslav 1 ; Shustin, Eugenii 2
@article{GT_2005_9_1_a13, author = {Itenberg, Ilia and Kharlamov, Viatcheslav and Shustin, Eugenii}, title = {Logarithmic asymptotics of the genus zero {Gromov{\textendash}Witten} invariants of the blown up plane}, journal = {Geometry & topology}, pages = {483--491}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2005}, doi = {10.2140/gt.2005.9.483}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.483/} }
TY - JOUR AU - Itenberg, Ilia AU - Kharlamov, Viatcheslav AU - Shustin, Eugenii TI - Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane JO - Geometry & topology PY - 2005 SP - 483 EP - 491 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.483/ DO - 10.2140/gt.2005.9.483 ID - GT_2005_9_1_a13 ER -
%0 Journal Article %A Itenberg, Ilia %A Kharlamov, Viatcheslav %A Shustin, Eugenii %T Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane %J Geometry & topology %D 2005 %P 483-491 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.483/ %R 10.2140/gt.2005.9.483 %F GT_2005_9_1_a13
Itenberg, Ilia; Kharlamov, Viatcheslav; Shustin, Eugenii. Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane. Geometry & topology, Tome 9 (2005) no. 1, pp. 483-491. doi : 10.2140/gt.2005.9.483. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.483/
[1] Quantum intersection rings, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 81
, ,[2] The quantum cohomology of blow-ups of $\mathbb{P}^2$ and enumerative geometry, J. Differential Geom. 48 (1998) 61
, ,[3] Families of varieties with prescribed singularities, Compositio Math. 69 (1989) 83
, ,[4] Geometry of families of nodal curves on the blown-up projective plane, Trans. Amer. Math. Soc. 350 (1998) 251
, , ,[5] Logarithmic equivalence of the Welschinger and the Gromov–Witten invariants, Uspekhi Mat. Nauk 59 (2004) 85
, , ,[6] Deformations of noncompact complex curves, and envelopes of meromorphy of spheres, Mat. Sb. 189 (1998) 23
, ,[7] On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997) 149
, , ,[8] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer (1996)
,[9] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525
, ,[10] Immersed spheres in symplectic 4–manifolds, Ann. Inst. Fourier (Grenoble) 42 (1992) 369
,[11] Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)
, ,[12] $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004)
, ,[13] Counting curves via lattice paths in polygons, C. R. Math. Acad. Sci. Paris 336 (2003) 629
,[14] Enumerative tropical algebraic geometry in $\mathbb R^2$, J. Amer. Math. Soc. 18 (2005) 313
,[15] On specializations of curves I, Trans. Amer. Math. Soc. 282 (1984) 739
,[16] A tropical approach to enumerative geometry, Algebra i Analiz 17 (2005) 170
,[17] Invariants of real rational symplectic 4–manifolds and lower bounds in real enumerative geometry, C. R. Math. Acad. Sci. Paris 336 (2003) 341
,[18] Invariants of real symplectic 4–manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005) 195
,Cité par Sources :