Flows and joins of metric spaces
Geometry & topology, Tome 9 (2005) no. 1, pp. 403-482.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce the functor which assigns to every metric space X its symmetric join X. As a set, X is a union of intervals connecting ordered pairs of points in X. Topologically, X is a natural quotient of the usual join of X with itself. We define an Isom(X)–invariant metric d on X.

Classical concepts known for n and negatively curved manifolds are defined in a precise way for any hyperbolic complex X, for example for a Cayley graph of a Gromov hyperbolic group. We define a double difference, a cross-ratio and horofunctions in the compactification X̄ = X X. They are continuous, Isom(X)–invariant, and satisfy sharp identities. We characterize the translation length of a hyperbolic isometry g Isom(X).

For any hyperbolic complex X, the symmetric join X̄ of X̄ and the (generalized) metric d on it are defined. The geodesic flow space (X) arises as a part of X̄. ((X),d) is an analogue of (the total space of) the unit tangent bundle on a simply connected negatively curved manifold. This flow space is defined for any hyperbolic complex X and has sharp properties. We also give a construction of the asymmetric join X Y of two metric spaces.

These concepts are canonical, ie functorial in X, and involve no “quasi"-language. Applications and relation to the Borel conjecture and others are discussed.

DOI : 10.2140/gt.2005.9.403
Keywords: symmetric join, asymmetric join, metric join, Gromov hyperbolic space, hyperbolic complex, geodesic flow, translation length, geodesic, metric geometry, double difference, cross-ratio

Mineyev, Igor 1

1 Department of Mathematics, University of Illinois at Urbana-Champaign, 250 Altgeld Hall, 1409 W Green Street, Urbana, Illinois 61801, USA
@article{GT_2005_9_1_a12,
     author = {Mineyev, Igor},
     title = {Flows and joins of metric spaces},
     journal = {Geometry & topology},
     pages = {403--482},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.403},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.403/}
}
TY  - JOUR
AU  - Mineyev, Igor
TI  - Flows and joins of metric spaces
JO  - Geometry & topology
PY  - 2005
SP  - 403
EP  - 482
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.403/
DO  - 10.2140/gt.2005.9.403
ID  - GT_2005_9_1_a12
ER  - 
%0 Journal Article
%A Mineyev, Igor
%T Flows and joins of metric spaces
%J Geometry & topology
%D 2005
%P 403-482
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.403/
%R 10.2140/gt.2005.9.403
%F GT_2005_9_1_a12
Mineyev, Igor. Flows and joins of metric spaces. Geometry & topology, Tome 9 (2005) no. 1, pp. 403-482. doi : 10.2140/gt.2005.9.403. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.403/

[1] N Bourbaki, Obshchaya topologiya: Osnovnye struktury, Izdat. “Nauka”, Moscow (1968)

[2] M Bourdon, Structure conforme au bord et flot géodésique d'un $\mathrm{CAT}(-1)$–espace, Enseign. Math. $(2)$ 41 (1995) 63

[3] M Bourdon, Sur le birapport au bord des $\mathrm{CAT}(-1)$–espaces, Inst. Hautes Études Sci. Publ. Math. (1996) 95

[4] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999)

[5] T Bühler, Gromov's geodesic flow, diploma thesis, ETH, dissertation (2002)

[6] J W Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994) 155

[7] J W Cannon, D Cooper, A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992) 419

[8] J W Cannon, E L Swenson, Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc. 350 (1998) 809

[9] J W Cannon, W J Floyd, R Kenyon, W R Parry, Hyperbolic geometry, from: "Flavors of geometry", Math. Sci. Res. Inst. Publ. 31, Cambridge Univ. Press (1997) 59

[10] C Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse Math. $(6)$ 3 (1994) 161

[11] T A Chapman, Homotopy conditions which detect simple homotopy equivalences, Pacific J. Math. 80 (1979) 13

[12] R M Charney, M W Davis, Strict hyperbolization, Topology 34 (1995) 329

[13] M Coornaert, Mesures de Patterson–Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241

[14] C B Croke, Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv. 65 (1990) 150

[15] M W Davis, T Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347

[16] F T Farrell, L E Jones, $K$–theory and dynamics I, Ann. of Math. $(2)$ 124 (1986) 531

[17] F T Farrell, L E Jones, $K$–theory and dynamics II, Ann. of Math. $(2)$ 126 (1987) 451

[18] F T Farrell, L E Jones, Compact negatively curved manifolds (of dim $\neq 3, 4$) are topologically rigid, Proc. Nat. Acad. Sci. U.S.A. 86 (1989) 3461

[19] F T Farrell, L E Jones, A topological analogue of Mostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989) 257

[20] F T Farrell, L E Jones, Rigidity and other topological aspects of compact nonpositively curved manifolds, Bull. Amer. Math. Soc. $($N.S.$)$ 22 (1990) 59

[21] F T Farrell, L E Jones, Classical aspherical manifolds, CBMS Regional Conference Series in Mathematics 75, Published for the Conference Board of the Mathematical Sciences, Washington, DC (1990)

[22] S Ferry, The homeomorphism group of a compact Hilbert cube manifold is an $\mathrm{ANR}$, Ann. Math. $(2)$ 106 (1977) 101

[23] A Furman, Coarse-geometric perspective on negatively curved manifolds and groups, from: "Rigidity in dynamics and geometry (Cambridge, 2000)", Springer (2002) 149

[24] D Gabai, G R Meyerhoff, N Thurston, Homotopy hyperbolic 3–manifolds are hyperbolic, Ann. of Math. $(2)$ 157 (2003) 335

[25] , Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)

[26] , Group theory from a geometrical viewpoint, World Scientific Publishing Co. (1991)

[27] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[28] S Hersonsky, F Paulin, On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv. 72 (1997) 349

[29] F Mathéus, Flot géodésique et groupes hyperboliques d'après M. Gromov, Sémin. Théor. Spectr. Géom. 9, Univ. Grenoble I (1991) 67

[30] I Mineyev, N Monod, Y Shalom, Ideal bicombings for hyperbolic groups and applications, Topology 43 (2004) 1319

[31] I Mineyev, G Yu, The Baum–Connes conjecture for hyperbolic groups, Invent. Math. 149 (2002) 97

[32] G D Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press (1973)

[33] J P Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. $(2)$ 131 (1990) 151

[34] J P Otal, Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Rev. Mat. Iberoamericana 8 (1992) 441

[35] F Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. $(2)$ 54 (1996) 50

[36] F Quinn, Ends of maps I, Ann. of Math. $(2)$ 110 (1979) 275

[37] E Swenson, Negatively curved groups and related topics (1993)

Cité par Sources :