Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce the functor which assigns to every metric space its symmetric join . As a set, is a union of intervals connecting ordered pairs of points in . Topologically, is a natural quotient of the usual join of with itself. We define an –invariant metric on .
Classical concepts known for and negatively curved manifolds are defined in a precise way for any hyperbolic complex , for example for a Cayley graph of a Gromov hyperbolic group. We define a double difference, a cross-ratio and horofunctions in the compactification . They are continuous, –invariant, and satisfy sharp identities. We characterize the translation length of a hyperbolic isometry .
For any hyperbolic complex , the symmetric join of and the (generalized) metric on it are defined. The geodesic flow space arises as a part of . is an analogue of (the total space of) the unit tangent bundle on a simply connected negatively curved manifold. This flow space is defined for any hyperbolic complex and has sharp properties. We also give a construction of the asymmetric join of two metric spaces.
These concepts are canonical, ie functorial in , and involve no “quasi"-language. Applications and relation to the Borel conjecture and others are discussed.
Mineyev, Igor 1
@article{GT_2005_9_1_a12, author = {Mineyev, Igor}, title = {Flows and joins of metric spaces}, journal = {Geometry & topology}, pages = {403--482}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2005}, doi = {10.2140/gt.2005.9.403}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.403/} }
Mineyev, Igor. Flows and joins of metric spaces. Geometry & topology, Tome 9 (2005) no. 1, pp. 403-482. doi : 10.2140/gt.2005.9.403. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.403/
[1] Obshchaya topologiya: Osnovnye struktury, Izdat. “Nauka”, Moscow (1968)
,[2] Structure conforme au bord et flot géodésique d'un $\mathrm{CAT}(-1)$–espace, Enseign. Math. $(2)$ 41 (1995) 63
,[3] Sur le birapport au bord des $\mathrm{CAT}(-1)$–espaces, Inst. Hautes Études Sci. Publ. Math. (1996) 95
,[4] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Springer (1999)
, ,[5] Gromov's geodesic flow, diploma thesis, ETH, dissertation (2002)
,[6] The combinatorial Riemann mapping theorem, Acta Math. 173 (1994) 155
,[7] A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992) 419
, ,[8] Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc. 350 (1998) 809
, ,[9] Hyperbolic geometry, from: "Flavors of geometry", Math. Sci. Res. Inst. Publ. 31, Cambridge Univ. Press (1997) 59
, , , ,[10] Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse Math. $(6)$ 3 (1994) 161
,[11] Homotopy conditions which detect simple homotopy equivalences, Pacific J. Math. 80 (1979) 13
,[12] Strict hyperbolization, Topology 34 (1995) 329
, ,[13] Mesures de Patterson–Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241
,[14] Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv. 65 (1990) 150
,[15] Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347
, ,[16] $K$–theory and dynamics I, Ann. of Math. $(2)$ 124 (1986) 531
, ,[17] $K$–theory and dynamics II, Ann. of Math. $(2)$ 126 (1987) 451
, ,[18] Compact negatively curved manifolds (of dim $\neq 3, 4$) are topologically rigid, Proc. Nat. Acad. Sci. U.S.A. 86 (1989) 3461
, ,[19] A topological analogue of Mostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989) 257
, ,[20] Rigidity and other topological aspects of compact nonpositively curved manifolds, Bull. Amer. Math. Soc. $($N.S.$)$ 22 (1990) 59
, ,[21] Classical aspherical manifolds, CBMS Regional Conference Series in Mathematics 75, Published for the Conference Board of the Mathematical Sciences, Washington, DC (1990)
, ,[22] The homeomorphism group of a compact Hilbert cube manifold is an $\mathrm{ANR}$, Ann. Math. $(2)$ 106 (1977) 101
,[23] Coarse-geometric perspective on negatively curved manifolds and groups, from: "Rigidity in dynamics and geometry (Cambridge, 2000)", Springer (2002) 149
,[24] Homotopy hyperbolic 3–manifolds are hyperbolic, Ann. of Math. $(2)$ 157 (2003) 335
, , ,[25] , Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)
[26] , Group theory from a geometrical viewpoint, World Scientific Publishing Co. (1991)
[27] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[28] On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv. 72 (1997) 349
, ,[29] Flot géodésique et groupes hyperboliques d'après M. Gromov, Sémin. Théor. Spectr. Géom. 9, Univ. Grenoble I (1991) 67
,[30] Ideal bicombings for hyperbolic groups and applications, Topology 43 (2004) 1319
, , ,[31] The Baum–Connes conjecture for hyperbolic groups, Invent. Math. 149 (2002) 97
, ,[32] Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press (1973)
,[33] Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. $(2)$ 131 (1990) 151
,[34] Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Rev. Mat. Iberoamericana 8 (1992) 441
,[35] Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. $(2)$ 54 (1996) 50
,[36] Ends of maps I, Ann. of Math. $(2)$ 110 (1979) 275
,[37] Negatively curved groups and related topics (1993)
,Cité par Sources :