Kleinian groups and the rank problem
Geometry & topology, Tome 9 (2005) no. 1, pp. 375-402.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the rank problem is decidable in the class of torsion-free word-hyperbolic Kleinian groups. We also show that every group in this class has only finitely many Nielsen equivalence classes of generating sets of a given cardinality.

DOI : 10.2140/gt.2005.9.375
Keywords: word-hyperbolic groups, Nielsen methods, 3–manifolds

Kapovich, Ilya 1 ; Weidmann, Richard 2

1 Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801, USA
2 Fachbereich Mathematik, Johann Wolfgang Goethe Universität, Robert Mayer-Straße 6–8, 60325 Frankfurt, Germany
@article{GT_2005_9_1_a11,
     author = {Kapovich, Ilya and Weidmann, Richard},
     title = {Kleinian groups and the rank problem},
     journal = {Geometry & topology},
     pages = {375--402},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.375},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.375/}
}
TY  - JOUR
AU  - Kapovich, Ilya
AU  - Weidmann, Richard
TI  - Kleinian groups and the rank problem
JO  - Geometry & topology
PY  - 2005
SP  - 375
EP  - 402
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.375/
DO  - 10.2140/gt.2005.9.375
ID  - GT_2005_9_1_a11
ER  - 
%0 Journal Article
%A Kapovich, Ilya
%A Weidmann, Richard
%T Kleinian groups and the rank problem
%J Geometry & topology
%D 2005
%P 375-402
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.375/
%R 10.2140/gt.2005.9.375
%F GT_2005_9_1_a11
Kapovich, Ilya; Weidmann, Richard. Kleinian groups and the rank problem. Geometry & topology, Tome 9 (2005) no. 1, pp. 375-402. doi : 10.2140/gt.2005.9.375. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.375/

[1] I Agol, Tameness of hyperbolic 3–manifolds

[2] J M Alonso, E Al., Notes on word hyperbolic groups, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 3

[3] G N Arzhantseva, On quasiconvex subgroups of word hyperbolic groups, Geom. Dedicata 87 (2001) 191

[4] G N Arzhantseva, A Y Ol’Shanskiĭ, Generality of the class of groups in which subgroups with a lesser number of generators are free, Mat. Zametki 59 (1996) 489, 638

[5] G Baumslag, C F Miller Iii, H Short, Unsolvable problems about small cancellation and word hyperbolic groups, Bull. London Math. Soc. 26 (1994) 97

[6] M Boileau, H Zieschang, Heegaard genus of closed orientable Seifert 3–manifolds, Invent. Math. 76 (1984) 455

[7] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385

[8] R D Canary, A covering theorem for hyperbolic 3–manifolds and its applications, Topology 35 (1996) 751

[9] N M Dunfield, W P Thurston, The virtual Haken conjecture: experiments and examples, Geom. Topol. 7 (2003) 399

[10] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publishers (1992)

[11] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. $(2)$ 136 (1992) 447

[12] , Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)

[13] V Gerasimov, Detecting connectedness of the boundary of a hyperbolic group, preprint (1999)

[14] S M Gersten, H B Short, Rational subgroups of biautomatic groups, Ann. of Math. $(2)$ 134 (1991) 125

[15] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[16] W Jaco, J H Rubinstein, 0–efficient triangulations of 3–manifolds, J. Differential Geom. 65 (2003) 61

[17] K Johannson, Topology and combinatorics of 3–manifolds, Lecture Notes in Mathematics 1599, Springer (1995)

[18] I Kapovich, Detecting quasiconvexity: algorithmic aspects, from: "Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994)", DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 25, Amer. Math. Soc. (1996) 91

[19] I Kapovich, R Weidmann, A Miasnikov, Foldings, graphs of groups and the membership problem, Internat. J. Algebra Comput. 15 (2005) 95

[20] I Kapovich, H Short, Greenberg's theorem for quasiconvex subgroups of word hyperbolic groups, Canad. J. Math. 48 (1996) 1224

[21] I Kapovich, R Weidmann, Nielsen methods and groups acting on hyperbolic spaces, Geom. Dedicata 98 (2003) 95

[22] I Kapovich, R Weidmann, Freely indecomposable groups acting on hyperbolic spaces, Internat. J. Algebra Comput. 14 (2004) 115

[23] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)

[24] W Magnus, A Karrass, D Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers, New York-London-Sydney (1966)

[25] P Papasoglu, An algorithm detecting hyperbolicity, from: "Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994)", DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 25, Amer. Math. Soc. (1996) 193

[26] E Rips, Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982) 45

[27] J H Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3–dimensional manifolds, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1

[28] P E Schupp, Coxeter groups, 2–completion, perimeter reduction and subgroup separability, Geom. Dedicata 96 (2003) 179

[29] Z Sela, The isomorphism problem for hyperbolic groups I, Ann. of Math. $(2)$ 141 (1995) 217

[30] C C Sims, Computation with finitely presented groups, Encyclopedia of Mathematics and its Applications 48, Cambridge University Press (1994)

[31] J Souto, The rank of the fundamental group of hyperbolic 3–manifolds fibering over the circle, preprint (2005)

[32] P Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1

[33] R Weidmann, The Nielsen method for groups acting on trees, Proc. London Math. Soc. $(3)$ 85 (2002) 93

[34] R Weidmann, The rank problem for sufficiently large Fuchsian groups, Proc. Lond. Math. Soc. $(3)$ 95 (2007) 609

Cité par Sources :