Knot and braid invariants from contact homology I
Geometry & topology, Tome 9 (2005) no. 1, pp. 247-297.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce topological invariants of knots and braid conjugacy classes, in the form of differential graded algebras, and present an explicit combinatorial formulation for these invariants. The algebras conjecturally give the relative contact homology of certain Legendrian tori in five-dimensional contact manifolds. We present several computations and derive a relation between the knot invariant and the determinant.

DOI : 10.2140/gt.2005.9.247
Keywords: contact homology, knot invariant, braid representation, differential graded algebra

Ng, Lenhard 1

1 Department of Mathematics, Stanford University, Stanford, California 94305, USA
@article{GT_2005_9_1_a7,
     author = {Ng, Lenhard},
     title = {Knot and braid invariants from contact homology {I}},
     journal = {Geometry & topology},
     pages = {247--297},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2005},
     doi = {10.2140/gt.2005.9.247},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.247/}
}
TY  - JOUR
AU  - Ng, Lenhard
TI  - Knot and braid invariants from contact homology I
JO  - Geometry & topology
PY  - 2005
SP  - 247
EP  - 297
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.247/
DO  - 10.2140/gt.2005.9.247
ID  - GT_2005_9_1_a7
ER  - 
%0 Journal Article
%A Ng, Lenhard
%T Knot and braid invariants from contact homology I
%J Geometry & topology
%D 2005
%P 247-297
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.247/
%R 10.2140/gt.2005.9.247
%F GT_2005_9_1_a7
Ng, Lenhard. Knot and braid invariants from contact homology I. Geometry & topology, Tome 9 (2005) no. 1, pp. 247-297. doi : 10.2140/gt.2005.9.247. http://geodesic.mathdoc.fr/articles/10.2140/gt.2005.9.247/

[1] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)

[2] G Burde, H Zieschang, Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter Co. (2003)

[3] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[4] J H Conway, An enumeration of knots and links, and some of their algebraic properties, from: "Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967)", Pergamon (1970) 329

[5] T Ekholm, J Etnyre, M Sullivan, Legendrian submanifolds in $R^{2n+1}$ and contact homology

[6] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 327

[7] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[8] J Epstein, D Fuchs, M Meyer, Chekanov–Eliashberg invariants and transverse approximations of Legendrian knots, Pacific J. Math. 201 (2001) 89

[9] J B Etnyre, L L Ng, J M Sabloff, Invariants of Legendrian knots and coherent orientations, J. Symplectic Geom. 1 (2002) 321

[10] K Fukaya, Y G Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96

[11] J Helton, R Miller, M Stankus, NCAlgebra: a Mathematica package for doing non commuting algebra

[12] S P Humphries, An approach to automorphisms of free groups and braids via transvections, Math. Z. 209 (1992) 131

[13] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[14] D Krammer, The braid group $B_4$ is linear, Invent. Math. 142 (2000) 451

[15] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554

[16] W Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980) 91

[17] P Melvin, S Shrestha, The nonuniqueness of Chekanov polynomials of Legendrian knots, Geom. Topol. 9 (2005) 1221

[18] L L Ng, Computable Legendrian invariants, Topology 42 (2003) 55

[19] L Ng, Knot and braid invariants from contact homology II, Geom. Topol. 9 (2005) 1603

[20] H Ooguri, C Vafa, Knot invariants and topological strings, Nuclear Phys. B 577 (2000) 419

[21] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[22] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1976)

[23] J M Sabloff, Invariants of Legendrian knots in circle bundles, Commun. Contemp. Math. 5 (2003) 569

Cité par Sources :